labse-kjh-ru / README.md
adeshkin's picture
Upload folder using huggingface_hub
0f0c488 verified
---
base_model: sentence-transformers/LaBSE
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:81836
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: ( аның ӱчӱн мындағылар андағ мӧңіс паза чочыстығ полтырлар ).
sentences:
- так как он не пришел , младший брат идет сам . когда младший брат пришел , один
старик привязал обоих братьев , а сам прислонился к огню , грея спину свою .
- шлёпать по грязи
- ( именно это и привело все общество в мрачное и тревожное настроение ).
- source_sentence: пір чӧптіг
sentences:
- его болезнь осложняется .
- единомышленники
- ощутить озноб , дрожь .
- source_sentence: анаң вторник кӱн уже килтір .
sentences:
- фашистский концлагерь .
- быть сплочёнными и единодушными .
- во вторник уже приехал .
- source_sentence: батальон командирі
sentences:
- 'и говорит ему иисус : истинно говорю тебе , что ты ныне , в эту ночь , прежде
нежели дважды пропоёт петух , трижды отречёшься от меня .'
- батальонный командир
- в это время мальчик , как суслик , выскочивший из норы , потеряв дар речи , умывался
опрокинутым на него молоком .
- source_sentence: прай сынынҷа андағ .
sentences:
- 'иисус говорит ей : не прикасайся ко мне , ибо я ещё не восшел к отцу моему ;
а иди к братьям моим и скажи им : восхожу к отцу моему и отцу вашему , и к богу
моему и богу вашему .'
- эх , не поверит !
- по всей высоте такая .
---
# SentenceTransformer based on sentence-transformers/LaBSE
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'прай сынынҷа андағ .',
'по всей высоте такая .',
'эх , не поверит !',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 81,836 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.67 tokens</li><li>max: 114 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.81 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:------------------------------------------------------------------------------------|:----------------------------------------------------------------|:-----------------|
| <code>– че , чоохтазаар анаң , исчем .</code> | <code>– ну , говорите же , слушаю .</code> | <code>1.0</code> |
| <code>чииттер агитбригадазы</code> | <code>молодёжная агитбригада .</code> | <code>1.0</code> |
| <code>че ипчі алчатхан оол орайлатчатханда , прайзы , сабыхсып , узубысхан .</code> | <code>и как жених замедлил , то задремали все и уснули .</code> | <code>1.0</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `num_train_epochs`: 1
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0098 | 100 | - |
| 0.0196 | 200 | - |
| 0.0293 | 300 | - |
| 0.0391 | 400 | - |
| 0.0489 | 500 | 0.5082 |
| 0.0587 | 600 | - |
| 0.0684 | 700 | - |
| 0.0782 | 800 | - |
| 0.0880 | 900 | - |
| 0.0978 | 1000 | 0.2939 |
| 0.1075 | 1100 | - |
| 0.1173 | 1200 | - |
| 0.1271 | 1300 | - |
| 0.1369 | 1400 | - |
| 0.1466 | 1500 | 0.272 |
| 0.1564 | 1600 | - |
| 0.1662 | 1700 | - |
| 0.1760 | 1800 | - |
| 0.1857 | 1900 | - |
| 0.1955 | 2000 | 0.2019 |
| 0.2053 | 2100 | - |
| 0.2151 | 2200 | - |
| 0.2248 | 2300 | - |
| 0.2346 | 2400 | - |
| 0.2444 | 2500 | 0.1543 |
| 0.2542 | 2600 | - |
| 0.2639 | 2700 | - |
| 0.2737 | 2800 | - |
| 0.2835 | 2900 | - |
| 0.2933 | 3000 | 0.1632 |
| 0.3030 | 3100 | - |
| 0.3128 | 3200 | - |
| 0.3226 | 3300 | - |
| 0.3324 | 3400 | - |
| 0.3421 | 3500 | 0.1483 |
| 0.3519 | 3600 | - |
| 0.3617 | 3700 | - |
| 0.3715 | 3800 | - |
| 0.3812 | 3900 | - |
| 0.3910 | 4000 | 0.136 |
| 0.4008 | 4100 | - |
| 0.4106 | 4200 | - |
| 0.4203 | 4300 | - |
| 0.4301 | 4400 | - |
| 0.4399 | 4500 | 0.1341 |
| 0.4497 | 4600 | - |
| 0.4594 | 4700 | - |
| 0.4692 | 4800 | - |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->