metadata
library_name: peft
base_model: google/gemma-2b
license: mit
tags:
- Mathematical Reasoning
language:
- en
datasets:
- adityasihag/math_QAaugP
This repo contains LoRA adapter weights.
Model Description
- Project GitHub Page: https://github.com/adityasihag1996/math_QA.git
- Developed by: Aditya Sihag
- Model type: fine-tuned using QLoRA on 1x RTX 4090
- Finetuned from model: google/gemma-2b
Results
Prompt Approach | GSM8k | MATH |
---|---|---|
Zero-Shot CoT | 43.66 | - |
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
LoraConfig
params:
- r: 128
- lora_alpha: lora_r * 2
- lora_dropout: 0.05
- bias: "none"
- task_type: "CAUSAL_LM"
- target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] The hyperparameters for the LoRA fine-tuning are listed below:
- epochs: 3
- learning_rate: 5e-5
- batch_size: 256
- max_grad_norm: 1.0
- weight_decay: 0.001
- lr_scheduler_type: "cosine"
- warmup_ratio: 0.03
Dataset
math_QA dataset is prepared as combination of MetaMathQA and MathInstruct, and some internal data. Refer math_QAaugP
Model Usage
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer
)
from peft import PeftModel
model_path = "google/gemma-2b"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype = torch.float16,
device_map = {"": 0},
)
# Load LoRA and merge
model = PeftModel.from_pretrained(model, "adityasihag/math_QA-gemma-2B-QLoRA-adapter")
model = model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
question = """Gretchen has 110 coins. There are 30 more gold coins than silver coins. How many gold coins does Gretchen have?"""
sample_input = f"""Question: {question} \n Answer: """
sample_input_tokenised = tokenizer(sample_input, return_tensors = "pt").to("cuda")
generated_ids = model.generate(
**sample_input_tokenised,
max_new_tokens = 512,
temperature = 0.3
)
output = tokenizer.decode(generated_ids[0], skip_special_tokens = True)
print(output)
Sample Input:
Question: Gretchen has 110 coins. There are 30 more gold coins than silver coins. How many gold coins does Gretchen have? \n Answer:
Model Output:
Let's assume the number of silver coins is x.
Since there are 30 more gold coins than silver coins, the number of gold coins is x + 30.
The total number of coins is x + (x + 30) = 110.
Combining like terms, we get 2x + 30 = 110.
Subtracting 30 from both sides, we get 2x = 80.
Dividing both sides by 2, we get x = 40.
So, Gretchen has 40 silver coins and 40 + 30 = 70 gold coins.
The answer is: 70
Prompt Template:
Question: <question>
Answer:
Comparing math_QA models with other SFT LLM models
Model | GSM8k Pass@1 | MATH Pass@1 |
---|---|---|
LLaMA-2-7B | 14.6 | 2.5 |
gemma-2b | 17.7 | |
LLaMA-2-13B | 28.7 | 3.9 |
LLaMA-2-34B | 42.2 | 6.24 |
math_QA-gemma-2B | 43.66 | |
gemma-7b | 46.4 | |
WizardMath-7B | 54.9 | 10.7 |
Mistral-7B | 35.4 | |
WizardMath-13B | 63.9 | 14.0 |
MetaMath-7B | 66.5 | 19.8 |
MetaMath-13B | 72.3 | 22.4 |
math_QA-Mistral-7B | 75.81 | |
Arithmo2-Mistral-7B | 76.4 | 27.2 |
MetaMath-Mistral-7B | 77.7 | 28.2 |
DeepSeekMath-Instruct-7B | 82.9 | 46.8 |
GPT4 | 92.0 | 52.9 |