|
--- |
|
base_model: BEE-spoke-data/beecoder-220M-python |
|
datasets: |
|
- BEE-spoke-data/pypi_clean-deduped |
|
- bigcode/the-stack-smol-xl |
|
- EleutherAI/proof-pile-2 |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
model_creator: BEE-spoke-data |
|
model_name: beecoder-220M-python |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- python |
|
- codegen |
|
- markdown |
|
- smol_llama |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
widget: |
|
- example_title: Add Numbers Function |
|
text: "def add_numbers(a, b):\n return\n" |
|
- example_title: Car Class |
|
text: "class Car:\n def __init__(self, make, model):\n self.make = make\n |
|
\ self.model = model\n\n def display_car(self):\n" |
|
- example_title: Pandas DataFrame |
|
text: 'import pandas as pd |
|
|
|
data = {''Name'': [''Tom'', ''Nick'', ''John''], ''Age'': [20, 21, 19]} |
|
|
|
df = pd.DataFrame(data).convert_dtypes() |
|
|
|
# eda |
|
|
|
' |
|
- example_title: Factorial Function |
|
text: "def factorial(n):\n if n == 0:\n return 1\n else:\n" |
|
- example_title: Fibonacci Function |
|
text: "def fibonacci(n):\n if n <= 0:\n raise ValueError(\"Incorrect input\")\n |
|
\ elif n == 1:\n return 0\n elif n == 2:\n return 1\n else:\n" |
|
- example_title: Matplotlib Plot |
|
text: 'import matplotlib.pyplot as plt |
|
|
|
import numpy as np |
|
|
|
x = np.linspace(0, 10, 100) |
|
|
|
# simple plot |
|
|
|
' |
|
- example_title: Reverse String Function |
|
text: "def reverse_string(s:str) -> str:\n return\n" |
|
- example_title: Palindrome Function |
|
text: "def is_palindrome(word:str) -> bool:\n return\n" |
|
- example_title: Bubble Sort Function |
|
text: "def bubble_sort(lst: list):\n n = len(lst)\n for i in range(n):\n for |
|
j in range(0, n-i-1):\n" |
|
- example_title: Binary Search Function |
|
text: "def binary_search(arr, low, high, x):\n if high >= low:\n mid = |
|
(high + low) // 2\n if arr[mid] == x:\n return mid\n elif |
|
arr[mid] > x:\n" |
|
--- |
|
# BEE-spoke-data/beecoder-220M-python-GGUF |
|
|
|
Quantized GGUF model files for [beecoder-220M-python](https://huggingface.co/BEE-spoke-data/beecoder-220M-python) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [beecoder-220m-python.fp16.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.fp16.gguf) | fp16 | 436.50 MB | |
|
| [beecoder-220m-python.q2_k.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q2_k.gguf) | q2_k | 94.43 MB | |
|
| [beecoder-220m-python.q3_k_m.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q3_k_m.gguf) | q3_k_m | 114.65 MB | |
|
| [beecoder-220m-python.q4_k_m.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q4_k_m.gguf) | q4_k_m | 137.58 MB | |
|
| [beecoder-220m-python.q5_k_m.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q5_k_m.gguf) | q5_k_m | 157.91 MB | |
|
| [beecoder-220m-python.q6_k.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q6_k.gguf) | q6_k | 179.52 MB | |
|
| [beecoder-220m-python.q8_0.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q8_0.gguf) | q8_0 | 232.28 MB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
# BEE-spoke-data/beecoder-220M-python |
|
|
|
|
|
|
|
|
|
This is `BEE-spoke-data/smol_llama-220M-GQA` fine-tuned for code generation on: |
|
|
|
- filtered version of stack-smol-XL |
|
- deduped version of 'algebraic stack' from proof-pile-2 |
|
- cleaned and deduped pypi (last dataset) |
|
|
|
This model (and the base model) were both trained using ctx length 2048. |
|
|
|
## examples |
|
|
|
> Example script for inference testing: [here](https://gist.github.com/pszemraj/c7738f664a64b935a558974d23a7aa8c) |
|
|
|
It has its limitations at 220M, but seems decent for single-line or docstring generation, and/or being used for speculative decoding for such purposes. |
|
|
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/bLrtpr7Vi_MPvtF7mozDN.png) |
|
|
|
The screenshot is on CPU on a laptop. |
|
|
|
--- |