agentlans's picture
Adding Evaluation Results (#1)
551bebf verified
metadata
license: llama3.2
model-index:
  - name: Llama-3.2-1B-Instruct-CrashCourse12K
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: wis-k/instruction-following-eval
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 53.95
            name: averaged accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: SaylorTwift/bbh
          split: test
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 9.39
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: lighteval/MATH-Hard
          split: test
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 6.57
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 0
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.2
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 8.99
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
          name: Open LLM Leaderboard

Model Card: agentlans/Llama-3.2-1B-Instruct-CrashCourse12K

Model Overview

  • Base Model: Llama-3.2-1B-Instruct
  • Fine-tuning Type: Supervised Fine-Tuning (SFT)
  • Dataset: agentlans/crash-course (12,000 rows)
  • Purpose: Enhanced instruction-following capabilities

Training Details

  • Method: Supervised fine-tuning on high-quality instruction dataset
  • Training Rows: 12,000
  • Objective: Improve task completion and instruction understanding

Performance

  • Optimized for multi-task instruction following
  • Improved zero-shot and few-shot performance
  • Enhanced reasoning and response coherence

Limitations

  • 1B parameter model with constrained complex reasoning
  • Knowledge cutoff: December 2023
  • Potential inherited biases from base model and training data

Recommended Use

  • General instruction-based tasks
  • Educational content generation
  • Simple reasoning and task completion

Open LLM Leaderboard Evaluation Results

Detailed results can be found here! Summarized results can be found here!

Metric Value (%)
Average 13.35
IFEval (0-Shot) 53.95
BBH (3-Shot) 9.39
MATH Lvl 5 (4-Shot) 6.57
GPQA (0-shot) 0.00
MuSR (0-shot) 1.20
MMLU-PRO (5-shot) 8.99