metadata
license: llama3.2
model-index:
- name: Llama-3.2-1B-Instruct-CrashCourse12K
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.95
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 9.39
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.57
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.2
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.99
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=agentlans%2FLlama-3.2-1B-Instruct-CrashCourse12K
name: Open LLM Leaderboard
Model Card: agentlans/Llama-3.2-1B-Instruct-CrashCourse12K
Model Overview
- Base Model: Llama-3.2-1B-Instruct
- Fine-tuning Type: Supervised Fine-Tuning (SFT)
- Dataset: agentlans/crash-course (12,000 rows)
- Purpose: Enhanced instruction-following capabilities
Training Details
- Method: Supervised fine-tuning on high-quality instruction dataset
- Training Rows: 12,000
- Objective: Improve task completion and instruction understanding
Performance
- Optimized for multi-task instruction following
- Improved zero-shot and few-shot performance
- Enhanced reasoning and response coherence
Limitations
- 1B parameter model with constrained complex reasoning
- Knowledge cutoff: December 2023
- Potential inherited biases from base model and training data
Recommended Use
- General instruction-based tasks
- Educational content generation
- Simple reasoning and task completion
Open LLM Leaderboard Evaluation Results
Detailed results can be found here! Summarized results can be found here!
Metric | Value (%) |
---|---|
Average | 13.35 |
IFEval (0-Shot) | 53.95 |
BBH (3-Shot) | 9.39 |
MATH Lvl 5 (4-Shot) | 6.57 |
GPQA (0-shot) | 0.00 |
MuSR (0-shot) | 1.20 |
MMLU-PRO (5-shot) | 8.99 |