SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-multilingual-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("agentlans/distilbert-base-multilingual-cased-aligned")
# Run inference
sentences = [
'Palm DOC Conduit for KPilot',
'PalmDOC- conduit foar KPilot',
'Man nepatinka gyventi kaime.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 867,042 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 21.88 tokens
- max: 121 tokens
- min: 3 tokens
- mean: 30.11 tokens
- max: 230 tokens
- Samples:
sentence_0 sentence_1 They need to be internationally recognized and supported.
Mereka harus diakui dan dibantu secara internasional.
I ride with these kids once a week, every Tuesday.
Ik rijd met deze kinderen een keer per week, elke dinsdag.
We still have some.
අපි ගාව තව ඒවා තියෙනවනේ.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0046 | 500 | 0.1996 |
0.0092 | 1000 | 0.087 |
0.0138 | 1500 | 0.0771 |
0.0185 | 2000 | 0.0646 |
0.0231 | 2500 | 0.0443 |
0.0277 | 3000 | 0.0526 |
0.0323 | 3500 | 0.05 |
0.0369 | 4000 | 0.0479 |
0.0415 | 4500 | 0.0477 |
0.0461 | 5000 | 0.0427 |
0.0507 | 5500 | 0.0343 |
0.0554 | 6000 | 0.0358 |
0.0600 | 6500 | 0.0452 |
0.0646 | 7000 | 0.0397 |
0.0692 | 7500 | 0.0289 |
0.0738 | 8000 | 0.0274 |
0.0784 | 8500 | 0.0364 |
0.0830 | 9000 | 0.0283 |
0.0877 | 9500 | 0.0295 |
0.0923 | 10000 | 0.0337 |
0.0969 | 10500 | 0.0303 |
0.1015 | 11000 | 0.0252 |
0.1061 | 11500 | 0.0241 |
0.1107 | 12000 | 0.0225 |
0.1153 | 12500 | 0.0263 |
0.1199 | 13000 | 0.0255 |
0.1246 | 13500 | 0.0311 |
0.1292 | 14000 | 0.0201 |
0.1338 | 14500 | 0.0209 |
0.1384 | 15000 | 0.0205 |
0.1430 | 15500 | 0.0242 |
0.1476 | 16000 | 0.0332 |
0.1522 | 16500 | 0.0346 |
0.1569 | 17000 | 0.0225 |
0.1615 | 17500 | 0.0245 |
0.1661 | 18000 | 0.0166 |
0.1707 | 18500 | 0.0196 |
0.1753 | 19000 | 0.0264 |
0.1799 | 19500 | 0.0212 |
0.1845 | 20000 | 0.0201 |
0.1891 | 20500 | 0.0238 |
0.1938 | 21000 | 0.0175 |
0.1984 | 21500 | 0.022 |
0.2030 | 22000 | 0.0201 |
0.2076 | 22500 | 0.0197 |
0.2122 | 23000 | 0.0137 |
0.2168 | 23500 | 0.017 |
0.2214 | 24000 | 0.031 |
0.2261 | 24500 | 0.0238 |
0.2307 | 25000 | 0.0194 |
0.2353 | 25500 | 0.024 |
0.2399 | 26000 | 0.022 |
0.2445 | 26500 | 0.0276 |
0.2491 | 27000 | 0.016 |
0.2537 | 27500 | 0.0203 |
0.2583 | 28000 | 0.0245 |
0.2630 | 28500 | 0.0161 |
0.2676 | 29000 | 0.0132 |
0.2722 | 29500 | 0.0142 |
0.2768 | 30000 | 0.0171 |
0.2814 | 30500 | 0.0207 |
0.2860 | 31000 | 0.0189 |
0.2906 | 31500 | 0.0169 |
0.2953 | 32000 | 0.0225 |
0.2999 | 32500 | 0.0224 |
0.3045 | 33000 | 0.0114 |
0.3091 | 33500 | 0.0213 |
0.3137 | 34000 | 0.0146 |
0.3183 | 34500 | 0.0154 |
0.3229 | 35000 | 0.0218 |
0.3275 | 35500 | 0.0096 |
0.3322 | 36000 | 0.0147 |
0.3368 | 36500 | 0.0186 |
0.3414 | 37000 | 0.0214 |
0.3460 | 37500 | 0.0231 |
0.3506 | 38000 | 0.0165 |
0.3552 | 38500 | 0.0157 |
0.3598 | 39000 | 0.0128 |
0.3645 | 39500 | 0.018 |
0.3691 | 40000 | 0.0183 |
0.3737 | 40500 | 0.0203 |
0.3783 | 41000 | 0.02 |
0.3829 | 41500 | 0.0165 |
0.3875 | 42000 | 0.0128 |
0.3921 | 42500 | 0.0106 |
0.3967 | 43000 | 0.0174 |
0.4014 | 43500 | 0.0168 |
0.4060 | 44000 | 0.0114 |
0.4106 | 44500 | 0.0158 |
0.4152 | 45000 | 0.0108 |
0.4198 | 45500 | 0.0141 |
0.4244 | 46000 | 0.0137 |
0.4290 | 46500 | 0.0137 |
0.4337 | 47000 | 0.0215 |
0.4383 | 47500 | 0.0123 |
0.4429 | 48000 | 0.0138 |
0.4475 | 48500 | 0.0152 |
0.4521 | 49000 | 0.0144 |
0.4567 | 49500 | 0.016 |
0.4613 | 50000 | 0.0132 |
0.4659 | 50500 | 0.0164 |
0.4706 | 51000 | 0.0155 |
0.4752 | 51500 | 0.0145 |
0.4798 | 52000 | 0.0173 |
0.4844 | 52500 | 0.02 |
0.4890 | 53000 | 0.0168 |
0.4936 | 53500 | 0.011 |
0.4982 | 54000 | 0.0116 |
0.5029 | 54500 | 0.009 |
0.5075 | 55000 | 0.0143 |
0.5121 | 55500 | 0.0111 |
0.5167 | 56000 | 0.0138 |
0.5213 | 56500 | 0.0104 |
0.5259 | 57000 | 0.0146 |
0.5305 | 57500 | 0.0116 |
0.5351 | 58000 | 0.0157 |
0.5398 | 58500 | 0.013 |
0.5444 | 59000 | 0.0144 |
0.5490 | 59500 | 0.0134 |
0.5536 | 60000 | 0.0114 |
0.5582 | 60500 | 0.0101 |
0.5628 | 61000 | 0.0164 |
0.5674 | 61500 | 0.0151 |
0.5721 | 62000 | 0.0138 |
0.5767 | 62500 | 0.0107 |
0.5813 | 63000 | 0.0102 |
0.5859 | 63500 | 0.0153 |
0.5905 | 64000 | 0.0103 |
0.5951 | 64500 | 0.0136 |
0.5997 | 65000 | 0.0107 |
0.6043 | 65500 | 0.0101 |
0.6090 | 66000 | 0.0101 |
0.6136 | 66500 | 0.0117 |
0.6182 | 67000 | 0.0113 |
0.6228 | 67500 | 0.0131 |
0.6274 | 68000 | 0.0068 |
0.6320 | 68500 | 0.0053 |
0.6366 | 69000 | 0.0113 |
0.6413 | 69500 | 0.0119 |
0.6459 | 70000 | 0.0094 |
0.6505 | 70500 | 0.0072 |
0.6551 | 71000 | 0.0171 |
0.6597 | 71500 | 0.0121 |
0.6643 | 72000 | 0.0134 |
0.6689 | 72500 | 0.0147 |
0.6735 | 73000 | 0.0075 |
0.6782 | 73500 | 0.0125 |
0.6828 | 74000 | 0.0064 |
0.6874 | 74500 | 0.0071 |
0.6920 | 75000 | 0.0073 |
0.6966 | 75500 | 0.0075 |
0.7012 | 76000 | 0.0097 |
0.7058 | 76500 | 0.01 |
0.7105 | 77000 | 0.0123 |
0.7151 | 77500 | 0.0093 |
0.7197 | 78000 | 0.0103 |
0.7243 | 78500 | 0.0179 |
0.7289 | 79000 | 0.0091 |
0.7335 | 79500 | 0.0121 |
0.7381 | 80000 | 0.0104 |
0.7428 | 80500 | 0.0083 |
0.7474 | 81000 | 0.0116 |
0.7520 | 81500 | 0.0084 |
0.7566 | 82000 | 0.0077 |
0.7612 | 82500 | 0.0081 |
0.7658 | 83000 | 0.0101 |
0.7704 | 83500 | 0.0093 |
0.7750 | 84000 | 0.0095 |
0.7797 | 84500 | 0.0107 |
0.7843 | 85000 | 0.0108 |
0.7889 | 85500 | 0.0095 |
0.7935 | 86000 | 0.0082 |
0.7981 | 86500 | 0.0103 |
0.8027 | 87000 | 0.0069 |
0.8073 | 87500 | 0.009 |
0.8120 | 88000 | 0.0081 |
0.8166 | 88500 | 0.0074 |
0.8212 | 89000 | 0.0069 |
0.8258 | 89500 | 0.0066 |
0.8304 | 90000 | 0.0065 |
0.8350 | 90500 | 0.0065 |
0.8396 | 91000 | 0.0088 |
0.8442 | 91500 | 0.008 |
0.8489 | 92000 | 0.0069 |
0.8535 | 92500 | 0.0095 |
0.8581 | 93000 | 0.0082 |
0.8627 | 93500 | 0.0068 |
0.8673 | 94000 | 0.006 |
0.8719 | 94500 | 0.0082 |
0.8765 | 95000 | 0.0121 |
0.8812 | 95500 | 0.0098 |
0.8858 | 96000 | 0.0083 |
0.8904 | 96500 | 0.008 |
0.8950 | 97000 | 0.0053 |
0.8996 | 97500 | 0.0102 |
0.9042 | 98000 | 0.0093 |
0.9088 | 98500 | 0.0042 |
0.9134 | 99000 | 0.0093 |
0.9181 | 99500 | 0.0138 |
0.9227 | 100000 | 0.0105 |
0.9273 | 100500 | 0.0079 |
0.9319 | 101000 | 0.0118 |
0.9365 | 101500 | 0.0072 |
0.9411 | 102000 | 0.0094 |
0.9457 | 102500 | 0.0108 |
0.9504 | 103000 | 0.0092 |
0.9550 | 103500 | 0.0062 |
0.9596 | 104000 | 0.0073 |
0.9642 | 104500 | 0.0089 |
0.9688 | 105000 | 0.0092 |
0.9734 | 105500 | 0.0076 |
0.9780 | 106000 | 0.0103 |
0.9826 | 106500 | 0.0064 |
0.9873 | 107000 | 0.0072 |
0.9919 | 107500 | 0.0052 |
0.9965 | 108000 | 0.0061 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.