agentlans commited on
Commit
9280936
·
verified ·
1 Parent(s): 6d8691f

Upload 11 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,581 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: distilbert/distilbert-base-multilingual-cased
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:867042
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Even children can understand it.
14
+ sentences:
15
+ - मी सगळीकडे छापले. मी लिहिले आणि सर्व काही मोजले. आणि नऊ महिन्यामध्ये मुले कोणत्याही
16
+ भाषेतला संगणकासोबत मोकळे सोडल्यावर पश्चिम देशातील कार्यालातील सेक्रेटरीएवढ्या
17
+ पातळीवर येऊ शकतो
18
+ - Anslået bliver 5000 kvinder om året dræbt som følge af domestisk vold, mens tusindvis
19
+ overlever med varige mén.
20
+ - इस बात को बच्चे भी समझते हैं।
21
+ - source_sentence: What do you want to buy?
22
+ sentences:
23
+ - 这是我们为福特汽车公司做的项目,
24
+ - İçtenlikle umuyorum ki yakında hastalığından iyileşeceksin.
25
+ - എന്താ വാങ്ങിക്കേണ്ടത്? തോക്കാണോ?
26
+ - source_sentence: Oh, come on, Charles.
27
+ sentences:
28
+ - Este es un ejemplo que preparé para mi hija.
29
+ - Noaptea a fost atât de rece încât, atunci când m-am întors, eram aproape îngheţat.
30
+ - No tak, Charlesi!
31
+ - source_sentence: In 1830 English mathematician Charles Babbage published a book
32
+ entitled Reflections on the Decline of Science in England to summarize what he
33
+ observed to be the existing state of scientific affairs.
34
+ sentences:
35
+ - В 1830 г. английский математик Чарлз Бэббедж опубликовал книгу Reflections on
36
+ the Decline of Science in England, в которой он описал свои наблюдения состояния
37
+ научного мира.
38
+ - A szakosodás ezeken a területek új és érdekes munkahelyekhez vezethet.
39
+ - Grimes seoses Darwini „Liikide tekkimisega ”:„ Mitte ükski teine raamat, mis kunagi
40
+ on trükitud, pole tekitanud mõtlevate inimeste keskel taolist poleemikat.
41
+ - source_sentence: Palm DOC Conduit for KPilot
42
+ sentences:
43
+ - PalmDOC- conduit foar KPilot
44
+ - Sabíem, doncs, que si volíem veure actuar aquesta peça de metall segons la mecànica
45
+ quàntica, hauríem de fer fora tots els altres passatgers.
46
+ - Man nepatinka gyventi kaime.
47
+ ---
48
+
49
+ # SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
50
+
51
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** Sentence Transformer
57
+ - **Base model:** [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) <!-- at revision 45c032ab32cc946ad88a166f7cb282f58c753c2e -->
58
+ - **Maximum Sequence Length:** 512 tokens
59
+ - **Output Dimensionality:** 768 dimensions
60
+ - **Similarity Function:** Cosine Similarity
61
+ <!-- - **Training Dataset:** Unknown -->
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
76
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("agentlans/distilbert-base-multilingual-cased-aligned")
96
+ # Run inference
97
+ sentences = [
98
+ 'Palm DOC Conduit for KPilot',
99
+ 'PalmDOC- conduit foar KPilot',
100
+ 'Man nepatinka gyventi kaime.',
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 768]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities.shape)
109
+ # [3, 3]
110
+ ```
111
+
112
+ <!--
113
+ ### Direct Usage (Transformers)
114
+
115
+ <details><summary>Click to see the direct usage in Transformers</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Downstream Usage (Sentence Transformers)
122
+
123
+ You can finetune this model on your own dataset.
124
+
125
+ <details><summary>Click to expand</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Dataset
151
+
152
+ #### Unnamed Dataset
153
+
154
+
155
+ * Size: 867,042 training samples
156
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
157
+ * Approximate statistics based on the first 1000 samples:
158
+ | | sentence_0 | sentence_1 |
159
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
160
+ | type | string | string |
161
+ | details | <ul><li>min: 3 tokens</li><li>mean: 21.88 tokens</li><li>max: 121 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 30.11 tokens</li><li>max: 230 tokens</li></ul> |
162
+ * Samples:
163
+ | sentence_0 | sentence_1 |
164
+ |:-----------------------------------------------------------------------|:------------------------------------------------------------------------|
165
+ | <code>They need to be internationally recognized and supported.</code> | <code>Mereka harus diakui dan dibantu secara internasional.</code> |
166
+ | <code>I ride with these kids once a week, every Tuesday.</code> | <code>Ik rijd met deze kinderen een keer per week, elke dinsdag.</code> |
167
+ | <code>We still have some.</code> | <code>අපි ගාව තව ඒවා තියෙනවනේ.</code> |
168
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
169
+ ```json
170
+ {
171
+ "scale": 20.0,
172
+ "similarity_fct": "cos_sim"
173
+ }
174
+ ```
175
+
176
+ ### Training Hyperparameters
177
+ #### Non-Default Hyperparameters
178
+
179
+ - `num_train_epochs`: 1
180
+ - `multi_dataset_batch_sampler`: round_robin
181
+
182
+ #### All Hyperparameters
183
+ <details><summary>Click to expand</summary>
184
+
185
+ - `overwrite_output_dir`: False
186
+ - `do_predict`: False
187
+ - `eval_strategy`: no
188
+ - `prediction_loss_only`: True
189
+ - `per_device_train_batch_size`: 8
190
+ - `per_device_eval_batch_size`: 8
191
+ - `per_gpu_train_batch_size`: None
192
+ - `per_gpu_eval_batch_size`: None
193
+ - `gradient_accumulation_steps`: 1
194
+ - `eval_accumulation_steps`: None
195
+ - `torch_empty_cache_steps`: None
196
+ - `learning_rate`: 5e-05
197
+ - `weight_decay`: 0.0
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 1
202
+ - `num_train_epochs`: 1
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.0
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: False
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: False
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: None
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: False
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `include_for_metrics`: []
273
+ - `eval_do_concat_batches`: True
274
+ - `fp16_backend`: auto
275
+ - `push_to_hub_model_id`: None
276
+ - `push_to_hub_organization`: None
277
+ - `mp_parameters`:
278
+ - `auto_find_batch_size`: False
279
+ - `full_determinism`: False
280
+ - `torchdynamo`: None
281
+ - `ray_scope`: last
282
+ - `ddp_timeout`: 1800
283
+ - `torch_compile`: False
284
+ - `torch_compile_backend`: None
285
+ - `torch_compile_mode`: None
286
+ - `dispatch_batches`: None
287
+ - `split_batches`: None
288
+ - `include_tokens_per_second`: False
289
+ - `include_num_input_tokens_seen`: False
290
+ - `neftune_noise_alpha`: None
291
+ - `optim_target_modules`: None
292
+ - `batch_eval_metrics`: False
293
+ - `eval_on_start`: False
294
+ - `use_liger_kernel`: False
295
+ - `eval_use_gather_object`: False
296
+ - `average_tokens_across_devices`: False
297
+ - `prompts`: None
298
+ - `batch_sampler`: batch_sampler
299
+ - `multi_dataset_batch_sampler`: round_robin
300
+
301
+ </details>
302
+
303
+ ### Training Logs
304
+ <details><summary>Click to expand</summary>
305
+
306
+ | Epoch | Step | Training Loss |
307
+ |:------:|:------:|:-------------:|
308
+ | 0.0046 | 500 | 0.1996 |
309
+ | 0.0092 | 1000 | 0.087 |
310
+ | 0.0138 | 1500 | 0.0771 |
311
+ | 0.0185 | 2000 | 0.0646 |
312
+ | 0.0231 | 2500 | 0.0443 |
313
+ | 0.0277 | 3000 | 0.0526 |
314
+ | 0.0323 | 3500 | 0.05 |
315
+ | 0.0369 | 4000 | 0.0479 |
316
+ | 0.0415 | 4500 | 0.0477 |
317
+ | 0.0461 | 5000 | 0.0427 |
318
+ | 0.0507 | 5500 | 0.0343 |
319
+ | 0.0554 | 6000 | 0.0358 |
320
+ | 0.0600 | 6500 | 0.0452 |
321
+ | 0.0646 | 7000 | 0.0397 |
322
+ | 0.0692 | 7500 | 0.0289 |
323
+ | 0.0738 | 8000 | 0.0274 |
324
+ | 0.0784 | 8500 | 0.0364 |
325
+ | 0.0830 | 9000 | 0.0283 |
326
+ | 0.0877 | 9500 | 0.0295 |
327
+ | 0.0923 | 10000 | 0.0337 |
328
+ | 0.0969 | 10500 | 0.0303 |
329
+ | 0.1015 | 11000 | 0.0252 |
330
+ | 0.1061 | 11500 | 0.0241 |
331
+ | 0.1107 | 12000 | 0.0225 |
332
+ | 0.1153 | 12500 | 0.0263 |
333
+ | 0.1199 | 13000 | 0.0255 |
334
+ | 0.1246 | 13500 | 0.0311 |
335
+ | 0.1292 | 14000 | 0.0201 |
336
+ | 0.1338 | 14500 | 0.0209 |
337
+ | 0.1384 | 15000 | 0.0205 |
338
+ | 0.1430 | 15500 | 0.0242 |
339
+ | 0.1476 | 16000 | 0.0332 |
340
+ | 0.1522 | 16500 | 0.0346 |
341
+ | 0.1569 | 17000 | 0.0225 |
342
+ | 0.1615 | 17500 | 0.0245 |
343
+ | 0.1661 | 18000 | 0.0166 |
344
+ | 0.1707 | 18500 | 0.0196 |
345
+ | 0.1753 | 19000 | 0.0264 |
346
+ | 0.1799 | 19500 | 0.0212 |
347
+ | 0.1845 | 20000 | 0.0201 |
348
+ | 0.1891 | 20500 | 0.0238 |
349
+ | 0.1938 | 21000 | 0.0175 |
350
+ | 0.1984 | 21500 | 0.022 |
351
+ | 0.2030 | 22000 | 0.0201 |
352
+ | 0.2076 | 22500 | 0.0197 |
353
+ | 0.2122 | 23000 | 0.0137 |
354
+ | 0.2168 | 23500 | 0.017 |
355
+ | 0.2214 | 24000 | 0.031 |
356
+ | 0.2261 | 24500 | 0.0238 |
357
+ | 0.2307 | 25000 | 0.0194 |
358
+ | 0.2353 | 25500 | 0.024 |
359
+ | 0.2399 | 26000 | 0.022 |
360
+ | 0.2445 | 26500 | 0.0276 |
361
+ | 0.2491 | 27000 | 0.016 |
362
+ | 0.2537 | 27500 | 0.0203 |
363
+ | 0.2583 | 28000 | 0.0245 |
364
+ | 0.2630 | 28500 | 0.0161 |
365
+ | 0.2676 | 29000 | 0.0132 |
366
+ | 0.2722 | 29500 | 0.0142 |
367
+ | 0.2768 | 30000 | 0.0171 |
368
+ | 0.2814 | 30500 | 0.0207 |
369
+ | 0.2860 | 31000 | 0.0189 |
370
+ | 0.2906 | 31500 | 0.0169 |
371
+ | 0.2953 | 32000 | 0.0225 |
372
+ | 0.2999 | 32500 | 0.0224 |
373
+ | 0.3045 | 33000 | 0.0114 |
374
+ | 0.3091 | 33500 | 0.0213 |
375
+ | 0.3137 | 34000 | 0.0146 |
376
+ | 0.3183 | 34500 | 0.0154 |
377
+ | 0.3229 | 35000 | 0.0218 |
378
+ | 0.3275 | 35500 | 0.0096 |
379
+ | 0.3322 | 36000 | 0.0147 |
380
+ | 0.3368 | 36500 | 0.0186 |
381
+ | 0.3414 | 37000 | 0.0214 |
382
+ | 0.3460 | 37500 | 0.0231 |
383
+ | 0.3506 | 38000 | 0.0165 |
384
+ | 0.3552 | 38500 | 0.0157 |
385
+ | 0.3598 | 39000 | 0.0128 |
386
+ | 0.3645 | 39500 | 0.018 |
387
+ | 0.3691 | 40000 | 0.0183 |
388
+ | 0.3737 | 40500 | 0.0203 |
389
+ | 0.3783 | 41000 | 0.02 |
390
+ | 0.3829 | 41500 | 0.0165 |
391
+ | 0.3875 | 42000 | 0.0128 |
392
+ | 0.3921 | 42500 | 0.0106 |
393
+ | 0.3967 | 43000 | 0.0174 |
394
+ | 0.4014 | 43500 | 0.0168 |
395
+ | 0.4060 | 44000 | 0.0114 |
396
+ | 0.4106 | 44500 | 0.0158 |
397
+ | 0.4152 | 45000 | 0.0108 |
398
+ | 0.4198 | 45500 | 0.0141 |
399
+ | 0.4244 | 46000 | 0.0137 |
400
+ | 0.4290 | 46500 | 0.0137 |
401
+ | 0.4337 | 47000 | 0.0215 |
402
+ | 0.4383 | 47500 | 0.0123 |
403
+ | 0.4429 | 48000 | 0.0138 |
404
+ | 0.4475 | 48500 | 0.0152 |
405
+ | 0.4521 | 49000 | 0.0144 |
406
+ | 0.4567 | 49500 | 0.016 |
407
+ | 0.4613 | 50000 | 0.0132 |
408
+ | 0.4659 | 50500 | 0.0164 |
409
+ | 0.4706 | 51000 | 0.0155 |
410
+ | 0.4752 | 51500 | 0.0145 |
411
+ | 0.4798 | 52000 | 0.0173 |
412
+ | 0.4844 | 52500 | 0.02 |
413
+ | 0.4890 | 53000 | 0.0168 |
414
+ | 0.4936 | 53500 | 0.011 |
415
+ | 0.4982 | 54000 | 0.0116 |
416
+ | 0.5029 | 54500 | 0.009 |
417
+ | 0.5075 | 55000 | 0.0143 |
418
+ | 0.5121 | 55500 | 0.0111 |
419
+ | 0.5167 | 56000 | 0.0138 |
420
+ | 0.5213 | 56500 | 0.0104 |
421
+ | 0.5259 | 57000 | 0.0146 |
422
+ | 0.5305 | 57500 | 0.0116 |
423
+ | 0.5351 | 58000 | 0.0157 |
424
+ | 0.5398 | 58500 | 0.013 |
425
+ | 0.5444 | 59000 | 0.0144 |
426
+ | 0.5490 | 59500 | 0.0134 |
427
+ | 0.5536 | 60000 | 0.0114 |
428
+ | 0.5582 | 60500 | 0.0101 |
429
+ | 0.5628 | 61000 | 0.0164 |
430
+ | 0.5674 | 61500 | 0.0151 |
431
+ | 0.5721 | 62000 | 0.0138 |
432
+ | 0.5767 | 62500 | 0.0107 |
433
+ | 0.5813 | 63000 | 0.0102 |
434
+ | 0.5859 | 63500 | 0.0153 |
435
+ | 0.5905 | 64000 | 0.0103 |
436
+ | 0.5951 | 64500 | 0.0136 |
437
+ | 0.5997 | 65000 | 0.0107 |
438
+ | 0.6043 | 65500 | 0.0101 |
439
+ | 0.6090 | 66000 | 0.0101 |
440
+ | 0.6136 | 66500 | 0.0117 |
441
+ | 0.6182 | 67000 | 0.0113 |
442
+ | 0.6228 | 67500 | 0.0131 |
443
+ | 0.6274 | 68000 | 0.0068 |
444
+ | 0.6320 | 68500 | 0.0053 |
445
+ | 0.6366 | 69000 | 0.0113 |
446
+ | 0.6413 | 69500 | 0.0119 |
447
+ | 0.6459 | 70000 | 0.0094 |
448
+ | 0.6505 | 70500 | 0.0072 |
449
+ | 0.6551 | 71000 | 0.0171 |
450
+ | 0.6597 | 71500 | 0.0121 |
451
+ | 0.6643 | 72000 | 0.0134 |
452
+ | 0.6689 | 72500 | 0.0147 |
453
+ | 0.6735 | 73000 | 0.0075 |
454
+ | 0.6782 | 73500 | 0.0125 |
455
+ | 0.6828 | 74000 | 0.0064 |
456
+ | 0.6874 | 74500 | 0.0071 |
457
+ | 0.6920 | 75000 | 0.0073 |
458
+ | 0.6966 | 75500 | 0.0075 |
459
+ | 0.7012 | 76000 | 0.0097 |
460
+ | 0.7058 | 76500 | 0.01 |
461
+ | 0.7105 | 77000 | 0.0123 |
462
+ | 0.7151 | 77500 | 0.0093 |
463
+ | 0.7197 | 78000 | 0.0103 |
464
+ | 0.7243 | 78500 | 0.0179 |
465
+ | 0.7289 | 79000 | 0.0091 |
466
+ | 0.7335 | 79500 | 0.0121 |
467
+ | 0.7381 | 80000 | 0.0104 |
468
+ | 0.7428 | 80500 | 0.0083 |
469
+ | 0.7474 | 81000 | 0.0116 |
470
+ | 0.7520 | 81500 | 0.0084 |
471
+ | 0.7566 | 82000 | 0.0077 |
472
+ | 0.7612 | 82500 | 0.0081 |
473
+ | 0.7658 | 83000 | 0.0101 |
474
+ | 0.7704 | 83500 | 0.0093 |
475
+ | 0.7750 | 84000 | 0.0095 |
476
+ | 0.7797 | 84500 | 0.0107 |
477
+ | 0.7843 | 85000 | 0.0108 |
478
+ | 0.7889 | 85500 | 0.0095 |
479
+ | 0.7935 | 86000 | 0.0082 |
480
+ | 0.7981 | 86500 | 0.0103 |
481
+ | 0.8027 | 87000 | 0.0069 |
482
+ | 0.8073 | 87500 | 0.009 |
483
+ | 0.8120 | 88000 | 0.0081 |
484
+ | 0.8166 | 88500 | 0.0074 |
485
+ | 0.8212 | 89000 | 0.0069 |
486
+ | 0.8258 | 89500 | 0.0066 |
487
+ | 0.8304 | 90000 | 0.0065 |
488
+ | 0.8350 | 90500 | 0.0065 |
489
+ | 0.8396 | 91000 | 0.0088 |
490
+ | 0.8442 | 91500 | 0.008 |
491
+ | 0.8489 | 92000 | 0.0069 |
492
+ | 0.8535 | 92500 | 0.0095 |
493
+ | 0.8581 | 93000 | 0.0082 |
494
+ | 0.8627 | 93500 | 0.0068 |
495
+ | 0.8673 | 94000 | 0.006 |
496
+ | 0.8719 | 94500 | 0.0082 |
497
+ | 0.8765 | 95000 | 0.0121 |
498
+ | 0.8812 | 95500 | 0.0098 |
499
+ | 0.8858 | 96000 | 0.0083 |
500
+ | 0.8904 | 96500 | 0.008 |
501
+ | 0.8950 | 97000 | 0.0053 |
502
+ | 0.8996 | 97500 | 0.0102 |
503
+ | 0.9042 | 98000 | 0.0093 |
504
+ | 0.9088 | 98500 | 0.0042 |
505
+ | 0.9134 | 99000 | 0.0093 |
506
+ | 0.9181 | 99500 | 0.0138 |
507
+ | 0.9227 | 100000 | 0.0105 |
508
+ | 0.9273 | 100500 | 0.0079 |
509
+ | 0.9319 | 101000 | 0.0118 |
510
+ | 0.9365 | 101500 | 0.0072 |
511
+ | 0.9411 | 102000 | 0.0094 |
512
+ | 0.9457 | 102500 | 0.0108 |
513
+ | 0.9504 | 103000 | 0.0092 |
514
+ | 0.9550 | 103500 | 0.0062 |
515
+ | 0.9596 | 104000 | 0.0073 |
516
+ | 0.9642 | 104500 | 0.0089 |
517
+ | 0.9688 | 105000 | 0.0092 |
518
+ | 0.9734 | 105500 | 0.0076 |
519
+ | 0.9780 | 106000 | 0.0103 |
520
+ | 0.9826 | 106500 | 0.0064 |
521
+ | 0.9873 | 107000 | 0.0072 |
522
+ | 0.9919 | 107500 | 0.0052 |
523
+ | 0.9965 | 108000 | 0.0061 |
524
+
525
+ </details>
526
+
527
+ ### Framework Versions
528
+ - Python: 3.10.12
529
+ - Sentence Transformers: 3.3.0
530
+ - Transformers: 4.46.3
531
+ - PyTorch: 2.5.1+cu124
532
+ - Accelerate: 1.1.1
533
+ - Datasets: 3.1.0
534
+ - Tokenizers: 0.20.3
535
+
536
+ ## Citation
537
+
538
+ ### BibTeX
539
+
540
+ #### Sentence Transformers
541
+ ```bibtex
542
+ @inproceedings{reimers-2019-sentence-bert,
543
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
544
+ author = "Reimers, Nils and Gurevych, Iryna",
545
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
546
+ month = "11",
547
+ year = "2019",
548
+ publisher = "Association for Computational Linguistics",
549
+ url = "https://arxiv.org/abs/1908.10084",
550
+ }
551
+ ```
552
+
553
+ #### MultipleNegativesRankingLoss
554
+ ```bibtex
555
+ @misc{henderson2017efficient,
556
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
557
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
558
+ year={2017},
559
+ eprint={1705.00652},
560
+ archivePrefix={arXiv},
561
+ primaryClass={cs.CL}
562
+ }
563
+ ```
564
+
565
+ <!--
566
+ ## Glossary
567
+
568
+ *Clearly define terms in order to be accessible across audiences.*
569
+ -->
570
+
571
+ <!--
572
+ ## Model Card Authors
573
+
574
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
575
+ -->
576
+
577
+ <!--
578
+ ## Model Card Contact
579
+
580
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
581
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilbert-base-multilingual-cased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_past": true,
17
+ "pad_token_id": 0,
18
+ "qa_dropout": 0.1,
19
+ "seq_classif_dropout": 0.2,
20
+ "sinusoidal_pos_embds": false,
21
+ "tie_weights_": true,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.46.3",
24
+ "vocab_size": 119547
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24f8eb27bae1f1bcb2bf9f8df21fa2511bb3d64b3794bf8df4bdfe70978363b9
3
+ size 538947416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff