metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented
split: train
args: Augmented
metrics:
- name: Accuracy
type: accuracy
value: 0.8795454545454545
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3293
- Accuracy: 0.8795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.8498 | 1.0 | 55 | 1.7348 | 0.3273 |
1.1886 | 2.0 | 110 | 1.0198 | 0.6102 |
0.8636 | 3.0 | 165 | 0.6859 | 0.7398 |
0.576 | 4.0 | 220 | 0.4357 | 0.8477 |
0.5875 | 5.0 | 275 | 0.4188 | 0.8386 |
0.4677 | 6.0 | 330 | 0.3293 | 0.8795 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3