#Bert2Bert Turkish Paraphrase Generation

#INISTA 2021

#Comparison of Turkish Paraphrase Generation Models

#Dataset

The dataset used in model training was created with the combination of the translation of the QQP dataset and manually generated dataset. Dataset Link

#How To Use

from transformers import BertTokenizerFast,EncoderDecoderModel
tokenizer=BertTokenizerFast.from_pretrained("dbmdz/bert-base-turkish-cased")
model = EncoderDecoderModel.from_pretrained("ahmetbagci/bert2bert-turkish-paraphrase-generation")

text="son model arabalar çevreye daha mı az zarar veriyor?"
input_ids = tokenizer(text, return_tensors="pt").input_ids
output_ids = model.generate(input_ids)
print(tokenizer.decode(output_ids[0], skip_special_tokens=True))
#sample output
#son model arabalar çevre için daha az zararlı mı?

#Cite


@INPROCEEDINGS{9548335,  
author={Bağcı, Ahmet and Amasyali, Mehmet Fatih},  
booktitle={2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)},   
title={Comparison of Turkish Paraphrase Generation Models},   
year={2021},  
volume={},  
number={},  
pages={1-6},  
doi={10.1109/INISTA52262.2021.9548335}
}
Downloads last month
141
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.