mGPT / README.md
ai-forever's picture
Update README.md
666ef9e
|
raw
history blame
2.26 kB
---
license: apache-2.0
language:
- en
- az
- sw
- af
- ar
- ba
- be
- bxr
- bg
- bn
- cv
- hy
- da
- de
- el
- es
- eu
- fa
- fi
- fr
- he
- hi
- hu
- kk
- id
- it
- ja
- ka
- ky
- ko
- lt
- lv
- mn
- ml
- os
- mr
- ms
- my
- nl
- ro
- pl
- pt
- sah
- ru
- tg
- sv
- ta
- te
- tk
- th
- tr
- tl
- tt
- tyv
- uk
- en
- ur
- vi
- uz
- yo
- zh
- xal
pipeline_tag: text-generation
tags:
- PyTorch
- Transformers
- gpt3
- gpt2
- Deepspeed
- Megatron
datasets:
- mc4
- wikipedia
thumbnail: "https://github.com/sberbank-ai/mgpt"
---
# Multilingual GPT model
We introduce family of autoregressive GPT-like models with 1.3 billion parameters trained on 60 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus.
We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) frameworks allows us to effectively parallelize the training and inference steps. Resulting models show performance on par with the recently released [XGLM](https://arxiv.org/pdf/2112.10668.pdf) models at the same time covering more languages and enhance NLP possibilities for low resource languages.
## Code
The source code for the mGPT XL model is available on [Github](https://github.com/sberbank-ai/mgpt)
## Paper
[Arxiv preprint](https://arxiv.org/user)
Cite us:
```{
bibtex
}
```
## Languages
Model includes 60 languages: (iso codes)
```az, sw, af, ar, ba, be, bxr, bg, bn, cv, hy, da, de, el, es, eu, fa, fi, fr, he, hi, hu, kk, id, it, ja, ka, ky, ko, lt, lv, mn, ml, os, mr, ms, my, nl, ro, pl, pt, sah, ru, tg, sv, ta, te, tk, th, tr, tl, tt, tyv, uk, en, ur, vi, uz, yo, zh, xal```
## Training Data Statistics
- Tokens: 559B
<img style="text-align:center; display:block;" src="https://huggingface.co/sberbank-ai/mGPT/resolve/main/stats.png">
"General training corpus statistics"
## Details
Model was trained with sequence length 1024 using transformers lib by [SberDevices](https://sberdevices.ru/) team on 80B tokens for 3 epochs. After that model was finetuned 1 epoch with sequence length 2048.
Total training time was around n days on n GPUs for n context and few days on n GPUs for n context.