|
--- |
|
tags: |
|
- question-generation |
|
- multilingual |
|
- nlp |
|
- indicnlp |
|
datasets: |
|
- ai4bharat/IndicQuestionGeneration |
|
- squad |
|
language: |
|
- as |
|
- bn |
|
- gu |
|
- hi |
|
- kn |
|
- ml |
|
- mr |
|
- or |
|
- pa |
|
- ta |
|
- te |
|
licenses: |
|
- cc-by-nc-4.0 |
|
|
|
|
|
--- |
|
|
|
# MultiIndicQuestionGenerationUnified |
|
|
|
MultiIndicQuestionGenerationUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details, |
|
see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationUnified to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationUnified are: |
|
|
|
<ul> |
|
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> |
|
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li> |
|
<li> Fine-tuned on large Indic language corpora (770 K examples). </li> |
|
<li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li> |
|
</ul> |
|
|
|
You can read more about MultiIndicQuestionGenerationUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>. |
|
|
|
|
|
## Using this model in `transformers` |
|
|
|
``` |
|
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM |
|
from transformers import AlbertTokenizer, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True) |
|
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified") |
|
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified") |
|
|
|
# Some initial mapping |
|
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") |
|
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") |
|
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") |
|
# To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] |
|
|
|
# First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". |
|
inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था।</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids |
|
|
|
out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids |
|
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) |
|
|
|
# For loss |
|
model_outputs.loss ## This is not label smoothed. |
|
|
|
# For logits |
|
model_outputs.logits |
|
|
|
# For generation. Pardon the messiness. Note the decoder_start_token_id. |
|
model.eval() # Set dropouts to zero |
|
|
|
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) |
|
|
|
# Decode to get output strings |
|
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
print(decoded_output) # कब खेला जाएगा पहला मैच? |
|
|
|
# Disclaimer |
|
Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py). |
|
|
|
``` |
|
# Note: |
|
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. |
|
|
|
## Benchmarks |
|
|
|
Scores on the `IndicQuestionGeneration` test sets are as follows: |
|
|
|
Language | RougeL |
|
---------|---------------------------- |
|
as | 20.48 |
|
bn | 26.63 |
|
gu | 27.71 |
|
hi | 35.38 |
|
kn | 23.56 |
|
ml | 22.17 |
|
mr | 23.52 |
|
or | 25.25 |
|
pa | 32.10 |
|
ta | 22.98 |
|
te | 25.67 |
|
|
|
|
|
|
|
## Citation |
|
|
|
If you use this model, please cite the following paper: |
|
``` |
|
@inproceedings{Kumar2022IndicNLGSM, |
|
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, |
|
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, |
|
year={2022}, |
|
url = "https://arxiv.org/abs/2203.05437" |
|
} |
|
``` |
|
# License |
|
The model is available under the MIT License. |