mis-wes

mis-wes is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 20]
      - model: senseable/WestLake-7B-v2
        layer_range: [0, 20]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
  t:
    - filter: lm_head
      value: [0.75]
    - filter: embed_tokens
      value: [0.75]
    - filter: self_attn
      value: [0.75,0.25]
    - filter: mlp
      value: [0.25,0.75]
    - filter: layernorm
      value: [0.5,0.5]
    - filter: modelnorm
      value: [0.75]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ajay141/mis-wes"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
5
Safetensors
Model size
4.62B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ajay141/mis-wes