Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased" using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
Fine-tuning parameters:
task = "ner"
model_checkpoint = "dbmdz/bert-base-turkish-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
How to use:
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("your text here")
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
Reference test results:
- accuracy: 0.9933935699477056
- f1: 0.9592969472710453
- precision: 0.9543530277931161
- recall: 0.9642923563325274
Evaluation results with the test sets proposed in "Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye." paper.
- Test Set Acc. Prec. Rec. F1-Score
- 20010000 0.9946 0.9871 0.9463 0.9662
- 20020000 0.9928 0.9134 0.9206 0.9170
- 20030000 0.9942 0.9814 0.9186 0.9489
- 20040000 0.9943 0.9660 0.9522 0.9590
- 20050000 0.9971 0.9539 0.9932 0.9732
- 20060000 0.9993 0.9942 0.9942 0.9942
- 20070000 0.9970 0.9806 0.9439 0.9619
- 20080000 0.9988 0.9821 0.9649 0.9735
- 20090000 0.9977 0.9891 0.9479 0.9681
- 20100000 0.9961 0.9684 0.9293 0.9485
- Overall 0.9961 0.9720 0.9516 0.9617
- Downloads last month
- 15,599
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.