akera's picture
akera/whisper-medium-sb-lug-eng
464203b verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - generator
model-index:
  - name: whisper-medium-sb-lug-eng
    results: []

whisper-medium-sb-lug-eng

This model is a fine-tuned version of openai/whisper-medium on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1064
  • Wer Lug: 0.239
  • Wer Eng: 0.147
  • Wer Mean: 0.193
  • Cer Lug: 0.075
  • Cer Eng: 0.075
  • Cer Mean: 0.075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Lug Wer Eng Wer Mean Cer Lug Cer Eng Cer Mean
0.6802 0.0417 500 0.2481 0.497 0.151 0.324 0.124 0.078 0.101
0.526 0.0833 1000 0.1814 0.362 0.374 0.368 0.103 0.236 0.17
0.4551 0.125 1500 0.1649 0.305 0.135 0.22 0.087 0.066 0.076
0.3982 0.1667 2000 0.1522 0.29 0.136 0.213 0.084 0.072 0.078
0.3781 0.2083 2500 0.1436 0.261 0.151 0.206 0.082 0.079 0.081
0.3749 0.25 3000 0.1374 0.267 0.256 0.262 0.082 0.151 0.117
0.3397 0.2917 3500 0.1358 0.272 0.161 0.217 0.085 0.094 0.09
0.321 0.3333 4000 0.1286 0.259 0.135 0.197 0.08 0.065 0.073
0.3014 0.375 4500 0.1271 0.252 0.178 0.215 0.078 0.139 0.108
0.3124 0.4167 5000 0.1241 0.252 0.132 0.192 0.077 0.063 0.07
0.2668 1.0383 5500 0.1190 0.249 0.128 0.188 0.076 0.062 0.069
0.2368 1.08 6000 0.1235 0.248 0.36 0.304 0.078 0.24 0.159
0.2188 1.1217 6500 0.1174 0.246 0.131 0.189 0.077 0.065 0.071
0.2226 1.1633 7000 0.1139 0.242 0.13 0.186 0.075 0.062 0.069
0.2268 1.205 7500 0.1158 0.241 0.136 0.188 0.077 0.066 0.072
0.241 1.2467 8000 0.1144 0.246 0.206 0.226 0.077 0.169 0.123
0.2315 1.2883 8500 0.1091 0.228 0.142 0.185 0.074 0.074 0.074
0.1932 1.33 9000 0.1106 0.235 0.128 0.181 0.075 0.061 0.068
0.2334 1.3717 9500 0.1091 0.239 0.138 0.189 0.074 0.072 0.073
0.1968 1.4133 10000 0.1072 0.237 0.129 0.183 0.074 0.063 0.069
0.1573 2.035 10500 0.1069 0.237 0.148 0.192 0.075 0.076 0.076
0.1527 2.0767 11000 0.1068 0.235 0.146 0.191 0.073 0.076 0.075
0.168 2.1183 11500 0.1061 0.235 0.145 0.19 0.074 0.073 0.074
0.1492 2.16 12000 0.1064 0.239 0.147 0.193 0.075 0.075 0.075

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.2.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1