File size: 3,666 Bytes
7956c2a
764d379
 
7956c2a
 
764d379
7956c2a
 
764d379
7956c2a
 
 
764d379
7956c2a
 
 
 
 
764d379
 
7956c2a
 
 
 
 
 
764d379
7956c2a
 
13aec20
 
7956c2a
764d379
8763f1f
6878f29
 
764d379
7956c2a
764d379
 
7956c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30d1e5
7956c2a
 
 
 
 
d30d1e5
7f108b5
7956c2a
 
 
 
 
 
18a7a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f108b5
 
 
 
 
 
 
 
 
 
7956c2a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
language:
- be
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny Belarusian
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 be
      type: mozilla-foundation/common_voice_11_0
      config: be
      split: validation
      args: be
    metrics:
    - name: Wer
      type: wer
      value: 46.52014652014652
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Belarusian

Repo to test model training

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 be dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4388
- Wer: 46.5201

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 300
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 2.5366        | 0.05  | 10   | 1.5402          | 94.5055 |
| 1.3721        | 0.1   | 20   | 1.0021          | 75.8242 |
| 0.9921        | 0.15  | 30   | 0.8322          | 75.0916 |
| 0.9844        | 0.2   | 40   | 0.8080          | 72.8938 |
| 0.7071        | 0.25  | 50   | 0.7862          | 77.2894 |
| 0.7998        | 0.3   | 60   | 0.7052          | 68.8645 |
| 0.6935        | 0.35  | 70   | 0.6781          | 64.2857 |
| 0.81          | 0.4   | 80   | 0.6341          | 63.5531 |
| 0.6133        | 0.45  | 90   | 0.6083          | 62.6374 |
| 0.6675        | 0.5   | 100  | 0.5851          | 62.8205 |
| 0.5577        | 0.55  | 110  | 0.5651          | 59.3407 |
| 0.6473        | 0.6   | 120  | 0.5638          | 58.0586 |
| 0.6018        | 0.65  | 130  | 0.5434          | 53.8462 |
| 0.5918        | 0.7   | 140  | 0.5385          | 54.9451 |
| 0.5654        | 0.75  | 150  | 0.5200          | 58.0586 |
| 0.587         | 0.8   | 160  | 0.4974          | 57.1429 |
| 0.6157        | 0.85  | 170  | 0.4834          | 53.2967 |
| 0.6803        | 0.9   | 180  | 0.4852          | 55.8608 |
| 0.4813        | 0.95  | 190  | 0.4686          | 51.2821 |
| 0.4952        | 1.0   | 200  | 0.4624          | 51.4652 |
| 0.3956        | 0.03  | 210  | 0.4690          | 52.0147 |
| 0.3719        | 0.07  | 220  | 0.4673          | 52.7473 |
| 0.3168        | 0.1   | 230  | 0.4499          | 51.4652 |
| 0.3582        | 0.13  | 240  | 0.4525          | 46.8864 |
| 0.2475        | 0.17  | 250  | 0.4612          | 52.3810 |
| 0.2988        | 0.2   | 260  | 0.4346          | 49.8168 |
| 0.2749        | 0.23  | 270  | 0.4249          | 48.9011 |
| 0.3368        | 0.27  | 280  | 0.4388          | 46.5201 |
| 0.2574        | 0.3   | 290  | 0.4309          | 46.7033 |
| 0.2921        | 0.33  | 300  | 0.4282          | 46.7033 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2