Zero-Shot Classification
Transformers
PyTorch
Safetensors
electra
text-classification
Inference Endpoints
scandi-nli-small / README.md
saattrupdan's picture
Update README.md
76e7935
|
raw
history blame
4 kB
---
pipeline_tag: zero-shot-classification
language:
- da
- no
- nb
- sv
license: mit
datasets:
- strombergnlp/danfever
- KBLab/overlim
- MoritzLaurer/multilingual-NLI-26lang-2mil7
model-index:
- name: electra-small-nordic-nli-scandi
results: []
widget:
- example_title: Danish
text: Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'
candidate_labels: sundhed, politik, sport, religion
- example_title: Norwegian
text: Regjeringen i Russland hevder Norge fører en politikk som vil føre til opptrapping i Arktis og «den endelige ødeleggelsen av russisk-norske relasjoner».
candidate_labels: helse, politikk, sport, religion
- example_title: Swedish
text: luras kroppens immunförsvar att bota cancer
candidate_labels: hälsa, politik, sport, religion
inference:
parameters:
hypothesis_template: "Dette eksempel handler om {}"
---
# ScandiNLI - Natural Language Inference model for Scandinavian Languages
This model is a fine-tuned version of [jonfd/electra-small-nordic](https://huggingface.co/jonfd/electra-small-nordic) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish.
It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish.
The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally.
## Quick start
You can use this model in your scripts as follows:
```python
>>> from transformers import pipeline
>>> classifier = pipeline(
... "zero-shot-classification",
... model="alexandrainst/electra-small-nordic-nli-scandi",
... )
>>> classifier(
... "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'",
... candidate_labels=['sundhed', 'politik', 'sport', 'religion'],
... hypothesis_template="Dette eksempel handler om {}",
... )
{'sequence': "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'",
'labels': ['religion', 'sport', 'politik', 'sundhed'],
'scores': [0.4504755437374115,
0.20737220346927643,
0.1976872682571411,
0.14446501433849335]}
```
## Performance
As Danish is, as far as we are aware, the only Scandinavian language with a gold standard NLI dataset, namely the [DanFEVER dataset](https://aclanthology.org/2021.nodalida-main.pdf#page=439), we report evaluation scores on the test split of that dataset.
We report Matthew's Correlation Coefficient (MCC), macro-average F1-score as well as accuracy.
| **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
| :-------- | :------------ | :--------- | :----------- | :----------- |
| [`alexandrainst/nb-bert-large-nli-scandi`](https://huggingface.co/alexandrainst/nb-bert-large-nli-scandi) | **73.80%** | **58.41%** | **86.98%** | 354M |
| [`alexandrainst/nb-bert-base-nli-scandi`](https://huggingface.co/alexandrainst/nb-bert-base-nli-scandi) | 62.44% | 55.00% | 80.42% | 178M |
| `alexandrainst/electra-small-nordic-nli-scandi` (this) | 47.28% | 48.88% | 73.46% | **22M** |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 4242
- gradient_accumulation_steps: 1
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- max_steps: 50,000