alexredna's picture
Training in progress, step 20
beb9cf1 verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model-index:
- name: Tukan-1.1B-Chat-v0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Tukan-1.1B-Chat-v0.1
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0546
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 36
- total_train_batch_size: 216
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1912 | 0.28 | 10 | 1.1099 |
| 1.1238 | 0.55 | 20 | 1.0655 |
| 1.1258 | 0.83 | 30 | 1.0550 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0a0+gitd925d94
- Datasets 2.14.6
- Tokenizers 0.15.0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.1