alokabhishek's picture
Updated Readme
bac8706 verified
|
raw
history blame
3.66 kB
---
library_name: transformers
tags:
- 4bit
- AWQ
- AutoAWQ
- llama
- llama-2
- facebook
- meta
- 7b
- quantized
license: llama2
pipeline_tag: text-generation
---
# Model Card for alokabhishek/Llama-2-7b-chat-hf-4bit-AWQ
<!-- Provide a quick summary of what the model is/does. -->
This repo contains 4-bit quantized (using AutoAWQ) model of Meta's meta-llama/Llama-2-7b-chat-hf
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration is developed by MIT-HAN-Lab
## Model Details
- Model creator: [Meta](https://huggingface.co/meta-llama)
- Original model: [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
### About 4 bit quantization using AutoAWQ
- AutoAWQ github repo: [AutoAWQ github repo](https://github.com/casper-hansen/AutoAWQ/tree/main)
- MIT-han-lab llm-aws github repo: [MIT-han-lab llm-aws github repo](https://github.com/mit-han-lab/llm-awq/tree/main)
@inproceedings{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Chen, Wei-Ming and Wang, Wei-Chen and Xiao, Guangxuan and Dang, Xingyu and Gan, Chuang and Han, Song},
booktitle={MLSys},
year={2024}
}
# How to Get Started with the Model
Use the code below to get started with the model.
## How to run from Python code
#### First install the package
```shell
!pip install autoawq
!pip install accelerate
```
#### Import
```python
import torch
import os
from torch import bfloat16
from huggingface_hub import login, HfApi, create_repo
from transformers import AutoTokenizer, pipeline
from awq import AutoAWQForCausalLM
```
#### Use a pipeline as a high-level helper
```python
# define the model ID
model_id_llama = "alokabhishek/Llama-2-7b-chat-hf-4bit-AWQ"
# Load model
tokenizer_llama = AutoTokenizer.from_pretrained(model_id_llama, use_fast=True)
model_llama = AutoAWQForCausalLM.from_quantized(model_id_llama, fuse_layer=True, trust_remote_code = False, safetensors = True)
# Set up the prompt and prompt template. Change instruction as per requirements.
prompt_llama = "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar."
fromatted_prompt = f'''[INST] <<SYS>> You are a helpful, and fun loving assistant. Always answer as jestfully as possible. <</SYS>> {prompt_llama} [/INST] '''
tokens = tokenizer_llama(fromatted_prompt, return_tensors="pt").input_ids.cuda()
# Generate output, adjust parameters as per requirements
generation_output = model_llama.generate(tokens, do_sample=True, temperature=1.7, top_p=0.95, top_k=40, max_new_tokens=512)
# Print the output
print(tokenizer_llama.decode(generation_output[0], skip_special_tokens=True))
```
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]