YiSM-34B-0rn / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
6b2252d verified
|
raw
history blame
6.37 kB
metadata
license: apache-2.0
library_name: transformers
tags:
  - merge
base_model:
  - 01-ai/Yi-1.5-34B-Chat
  - 01-ai/Yi-1.5-34B
pipeline_tag: text-generation
model-index:
  - name: YiSM-34B-0rn
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.54
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=altomek/YiSM-34B-0rn
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 86.67
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=altomek/YiSM-34B-0rn
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=altomek/YiSM-34B-0rn
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 59.68
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=altomek/YiSM-34B-0rn
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.66
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=altomek/YiSM-34B-0rn
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=altomek/YiSM-34B-0rn
          name: Open LLM Leaderboard

intro music...

YiSM-34B-0rn

This is Yi Self Merged. I wanted model that will follow most instuctions yet preserve its base model nature.

Ingridients

Settings

I use max_seq_len 8K with alpha_value 2.65.

SillyTavern presets:

{
    "temp": 0.1,
    "temperature_last": true,
    "top_p": 1,
    "top_k": 0,
    "top_a": 0,
    "tfs": 1,
    "epsilon_cutoff": 0,
    "eta_cutoff": 0,
    "typical_p": 1,
    "min_p": 0,
    "rep_pen": 1.08,
    "rep_pen_range": 0,
    "no_repeat_ngram_size": 0,
    "penalty_alpha": 0,
    "num_beams": 1,
    "length_penalty": 1,
    "min_length": 0,
    "encoder_rep_pen": 1,
    "freq_pen": 0.01,
    "presence_pen": 0,
    "do_sample": true,
    "early_stopping": false,
    "add_bos_token": true,
    "truncation_length": 2048,
    "ban_eos_token": false,
    "skip_special_tokens": true,
    "streaming": true,
    "mirostat_mode": 0,
    "mirostat_tau": 5,
    "mirostat_eta": 0.1,
    "guidance_scale": 1,
    "negative_prompt": "",
    "grammar_string": "",
    "banned_tokens": "",
    "ignore_eos_token_aphrodite": false,
    "spaces_between_special_tokens_aphrodite": true,
    "sampler_order": [
        6,
        0,
        1,
        3,
        4,
        2,
        5
    ],
    "logit_bias": [],
    "n": 1,
    "rep_pen_size": 0,
    "genamt": 2048,
    "max_length": 8192
}

Terms and Conditions of Use

The following table outlines the primary characteristics and intended uses of my YiSM-34B-0rn models:

Model Type Purpose Target Users Key Features
Censored Suitable for general audiences and sensitive topics Educational institutions, families, and individuals seeking age-appropriate content Restricts explicit or mature material
Neutral (**this one) Balances accessibility with openness Universities, researchers, and curious minds Encourages exploration and intellectual exchange
Uncensored Ideal for adults and specialized fields Professionals, experts, and advanced scholars Offers unfiltered access to diverse viewpoints and knowledge

Please remember that all YiSM-34B-0rn models operate under the apache-2.0 license, so familiarize yourself with its terms and conditions before employing their content.

Quants

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.65
AI2 Reasoning Challenge (25-Shot) 69.54
HellaSwag (10-Shot) 86.67
MMLU (5-Shot) 78.51
TruthfulQA (0-shot) 59.68
Winogrande (5-shot) 83.66
GSM8k (5-shot) 75.82