alvarobartt's picture
alvarobartt HF staff
Update README.md
929d13f
---
language:
- es
license: cc-by-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
widget:
- text: George Washington estuvo en Washington.
pipeline_tag: token-classification
base_model: PlanTL-GOB-ES/roberta-base-bne
model-index:
- name: SpanMarker with PlanTL-GOB-ES/roberta-base-bne on conll2002
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: conll2002
type: conll2002
split: eval
metrics:
- type: f1
value: 0.871172868582195
name: F1
- type: precision
value: 0.888328530259366
name: Precision
- type: recall
value: 0.8546672828096118
name: Recall
---
# SpanMarker with PlanTL-GOB-ES/roberta-base-bne on conll2002
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2002](https://huggingface.co/datasets/conll2002) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [conll2002](https://huggingface.co/datasets/conll2002)
- **Languages:** es
- **License:** cc-by-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------|
| LOC | "Australia", "Victoria", "Melbourne" |
| MISC | "Ley", "Ciudad", "CrimeNet" |
| ORG | "Commonwealth", "EFE", "Tribunal Supremo" |
| PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-roberta-base-bne-conll-2002-es")
# Run inference
entities = model.predict("George Washington estuvo en Washington.")
```
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:-----|
| Sentence length | 1 | 31.8052 | 1238 |
| Entities per sentence | 0 | 2.2586 | 160 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.1188 | 100 | 0.0704 | 0.0 | 0.0 | 0.0 | 0.8608 |
| 0.2375 | 200 | 0.0279 | 0.8765 | 0.4034 | 0.5525 | 0.9025 |
| 0.3563 | 300 | 0.0158 | 0.8381 | 0.7211 | 0.7752 | 0.9524 |
| 0.4751 | 400 | 0.0134 | 0.8525 | 0.7463 | 0.7959 | 0.9576 |
| 0.5938 | 500 | 0.0130 | 0.8844 | 0.7549 | 0.8145 | 0.9560 |
| 0.7126 | 600 | 0.0119 | 0.8480 | 0.8006 | 0.8236 | 0.9650 |
| 0.8314 | 700 | 0.0098 | 0.8794 | 0.8408 | 0.8597 | 0.9695 |
| 0.9501 | 800 | 0.0091 | 0.8842 | 0.8360 | 0.8594 | 0.9722 |
| 1.0689 | 900 | 0.0093 | 0.8976 | 0.8387 | 0.8672 | 0.9698 |
| 1.1876 | 1000 | 0.0094 | 0.8880 | 0.8517 | 0.8694 | 0.9739 |
| 1.3064 | 1100 | 0.0086 | 0.8920 | 0.8530 | 0.8721 | 0.9737 |
| 1.4252 | 1200 | 0.0092 | 0.8896 | 0.8452 | 0.8668 | 0.9728 |
| 1.5439 | 1300 | 0.0094 | 0.8765 | 0.8313 | 0.8533 | 0.9720 |
| 1.6627 | 1400 | 0.0089 | 0.8805 | 0.8445 | 0.8621 | 0.9720 |
| 1.7815 | 1500 | 0.0088 | 0.8834 | 0.8581 | 0.8706 | 0.9747 |
| 1.9002 | 1600 | 0.0088 | 0.8883 | 0.8547 | 0.8712 | 0.9747 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.3.1.dev
- Transformers: 4.33.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.5
- Tokenizers: 0.13.3
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->