SpanMarker with xlm-roberta-large on conll2002

This is a SpanMarker model that can be used for Named Entity Recognition. This SpanMarker model uses xlm-roberta-large as the underlying encoder.

Model Details

Model Description

  • Model Type: SpanMarker
  • Encoder: xlm-roberta-large
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 8 words
  • Training Dataset: conll2002
  • Language: es
  • License: cc-by-4.0

Model Sources

Model Labels

Label Examples
LOC "Melbourne", "Australia", "Victoria"
MISC "CrimeNet", "Ciudad", "Ley"
ORG "Commonwealth", "Tribunal Supremo", "EFE"
PER "Abogado General del Estado", "Daryl Williams", "Abogado General"

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-xlm-roberta-large-conll-2002-es")
# Run inference
entities = model.predict("George Washington fue a Washington.")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 31.8052 1238
Entities per sentence 0 2.2586 160

Training Hyperparameters

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
0.0587 50 0.4612 0.0280 0.0007 0.0014 0.8576
0.1174 100 0.0512 0.5 0.0002 0.0005 0.8609
0.1761 150 0.0254 0.7622 0.5494 0.6386 0.9278
0.2347 200 0.0177 0.7840 0.7135 0.7471 0.9483
0.2934 250 0.0153 0.8072 0.7944 0.8007 0.9662
0.3521 300 0.0175 0.8439 0.7544 0.7966 0.9611
0.4108 350 0.0103 0.8828 0.8108 0.8452 0.9687
0.4695 400 0.0105 0.8674 0.8433 0.8552 0.9724
0.5282 450 0.0098 0.8651 0.8477 0.8563 0.9745
0.5869 500 0.0092 0.8634 0.8306 0.8467 0.9736
0.6455 550 0.0106 0.8556 0.8581 0.8568 0.9758
0.7042 600 0.0096 0.8712 0.8521 0.8616 0.9733
0.7629 650 0.0090 0.8791 0.8420 0.8601 0.9740
0.8216 700 0.0082 0.8883 0.8799 0.8840 0.9769
0.8803 750 0.0081 0.8877 0.8604 0.8739 0.9763
0.9390 800 0.0087 0.8785 0.8738 0.8762 0.9763
0.9977 850 0.0084 0.8777 0.8653 0.8714 0.9767
1.0563 900 0.0081 0.8894 0.8713 0.8803 0.9767
1.1150 950 0.0078 0.8944 0.8708 0.8825 0.9768
1.1737 1000 0.0079 0.8973 0.8722 0.8846 0.9776
1.2324 1050 0.0080 0.8792 0.8780 0.8786 0.9783
1.2911 1100 0.0082 0.8821 0.8574 0.8696 0.9767
1.3498 1150 0.0075 0.8928 0.8697 0.8811 0.9774
1.4085 1200 0.0076 0.8919 0.8803 0.8860 0.9792
1.4671 1250 0.0078 0.8846 0.8695 0.8770 0.9781
1.5258 1300 0.0074 0.8944 0.8845 0.8894 0.9792
1.5845 1350 0.0076 0.8922 0.8856 0.8889 0.9796
1.6432 1400 0.0072 0.9004 0.8799 0.8900 0.9790
1.7019 1450 0.0076 0.8944 0.8889 0.8916 0.9800
1.7606 1500 0.0074 0.8962 0.8861 0.8911 0.9800
1.8192 1550 0.0072 0.8988 0.8886 0.8937 0.9809
1.8779 1600 0.0074 0.8962 0.8833 0.8897 0.9797
1.9366 1650 0.0071 0.8976 0.8849 0.8912 0.9799
1.9953 1700 0.0071 0.8981 0.8842 0.8911 0.9799

Framework Versions

  • Python: 3.10.12
  • SpanMarker: 1.3.1.dev
  • Transformers: 4.33.2
  • PyTorch: 2.0.1+cu118
  • Datasets: 2.14.5
  • Tokenizers: 0.13.3

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
87
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alvarobartt/span-marker-xlm-roberta-large-conll-2002-es

Finetuned
(332)
this model

Dataset used to train alvarobartt/span-marker-xlm-roberta-large-conll-2002-es

Collection including alvarobartt/span-marker-xlm-roberta-large-conll-2002-es

Evaluation results