license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- conll2003 | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
model-index: | |
- name: bert-finetuned-ner | |
results: | |
- task: | |
name: Token Classification | |
type: token-classification | |
dataset: | |
name: conll2003 | |
type: conll2003 | |
args: conll2003 | |
metrics: | |
- name: Precision | |
type: precision | |
value: 0.9314097279472382 | |
- name: Recall | |
type: recall | |
value: 0.9506900033658701 | |
- name: F1 | |
type: f1 | |
value: 0.94095111185142 | |
- name: Accuracy | |
type: accuracy | |
value: 0.9862541943839407 | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# bert-finetuned-ner | |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.0622 | |
- Precision: 0.9314 | |
- Recall: 0.9507 | |
- F1: 0.9410 | |
- Accuracy: 0.9863 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.0821 | 1.0 | 1756 | 0.0639 | 0.9108 | 0.9371 | 0.9238 | 0.9834 | | |
| 0.0366 | 2.0 | 3512 | 0.0585 | 0.9310 | 0.9497 | 0.9403 | 0.9857 | | |
| 0.019 | 3.0 | 5268 | 0.0622 | 0.9314 | 0.9507 | 0.9410 | 0.9863 | | |
### Framework versions | |
- Transformers 4.20.1 | |
- Pytorch 1.12.0+cu113 | |
- Datasets 2.3.2 | |
- Tokenizers 0.12.1 | |