amaye15's picture
End of training
f9b9ba0 verified
|
raw
history blame
3.43 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window16-256
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: SwinV2-Base-Document-Classifier
    results: []

SwinV2-Base-Document-Classifier

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window16-256 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0573
  • Accuracy: 0.9810
  • F1: 0.9810
  • Precision: 0.9813
  • Recall: 0.9810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0814 0.12 50 0.0876 0.9740 0.9741 0.9749 0.9740
0.078 0.13 51 0.0658 0.9797 0.9797 0.9799 0.9797
0.143 0.13 52 0.0609 0.9831 0.9831 0.9832 0.9831
0.0863 0.13 53 0.0595 0.9832 0.9832 0.9834 0.9832
0.0561 0.14 54 0.0650 0.9825 0.9825 0.9826 0.9825
0.1118 0.14 55 0.0697 0.9804 0.9804 0.9806 0.9804
0.1258 0.14 56 0.1053 0.9678 0.9678 0.9697 0.9678
0.132 0.14 57 0.0672 0.9781 0.9781 0.9785 0.9781
0.1564 0.14 58 0.0582 0.9827 0.9827 0.9829 0.9827
0.1085 0.15 59 0.0557 0.9849 0.9848 0.9849 0.9848
0.0506 0.15 60 0.0548 0.9845 0.9845 0.9845 0.9845
0.0787 0.15 61 0.1049 0.9660 0.9661 0.9681 0.9660
0.1211 0.15 62 0.0792 0.9741 0.9741 0.9746 0.9741
0.0907 0.16 63 0.0608 0.9826 0.9825 0.9826 0.9826
0.0419 0.16 64 0.0577 0.9832 0.9832 0.9833 0.9832
0.1659 0.16 65 0.0548 0.9843 0.9843 0.9844 0.9843
0.0983 0.17 66 0.0657 0.9805 0.9805 0.9814 0.9804
0.0535 0.17 67 0.0493 0.9851 0.9851 0.9851 0.9851
0.0936 0.17 68 0.0588 0.9827 0.9827 0.9830 0.9827
0.0933 0.17 69 0.0573 0.9810 0.9810 0.9813 0.9810

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2