metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window16-256
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: SwinV2-Base-Document-Classifier
results: []
SwinV2-Base-Document-Classifier
This model is a fine-tuned version of microsoft/swinv2-base-patch4-window16-256 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0573
- Accuracy: 0.9810
- F1: 0.9810
- Precision: 0.9813
- Recall: 0.9810
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0814 | 0.12 | 50 | 0.0876 | 0.9740 | 0.9741 | 0.9749 | 0.9740 |
0.078 | 0.13 | 51 | 0.0658 | 0.9797 | 0.9797 | 0.9799 | 0.9797 |
0.143 | 0.13 | 52 | 0.0609 | 0.9831 | 0.9831 | 0.9832 | 0.9831 |
0.0863 | 0.13 | 53 | 0.0595 | 0.9832 | 0.9832 | 0.9834 | 0.9832 |
0.0561 | 0.14 | 54 | 0.0650 | 0.9825 | 0.9825 | 0.9826 | 0.9825 |
0.1118 | 0.14 | 55 | 0.0697 | 0.9804 | 0.9804 | 0.9806 | 0.9804 |
0.1258 | 0.14 | 56 | 0.1053 | 0.9678 | 0.9678 | 0.9697 | 0.9678 |
0.132 | 0.14 | 57 | 0.0672 | 0.9781 | 0.9781 | 0.9785 | 0.9781 |
0.1564 | 0.14 | 58 | 0.0582 | 0.9827 | 0.9827 | 0.9829 | 0.9827 |
0.1085 | 0.15 | 59 | 0.0557 | 0.9849 | 0.9848 | 0.9849 | 0.9848 |
0.0506 | 0.15 | 60 | 0.0548 | 0.9845 | 0.9845 | 0.9845 | 0.9845 |
0.0787 | 0.15 | 61 | 0.1049 | 0.9660 | 0.9661 | 0.9681 | 0.9660 |
0.1211 | 0.15 | 62 | 0.0792 | 0.9741 | 0.9741 | 0.9746 | 0.9741 |
0.0907 | 0.16 | 63 | 0.0608 | 0.9826 | 0.9825 | 0.9826 | 0.9826 |
0.0419 | 0.16 | 64 | 0.0577 | 0.9832 | 0.9832 | 0.9833 | 0.9832 |
0.1659 | 0.16 | 65 | 0.0548 | 0.9843 | 0.9843 | 0.9844 | 0.9843 |
0.0983 | 0.17 | 66 | 0.0657 | 0.9805 | 0.9805 | 0.9814 | 0.9804 |
0.0535 | 0.17 | 67 | 0.0493 | 0.9851 | 0.9851 | 0.9851 | 0.9851 |
0.0936 | 0.17 | 68 | 0.0588 | 0.9827 | 0.9827 | 0.9830 | 0.9827 |
0.0933 | 0.17 | 69 | 0.0573 | 0.9810 | 0.9810 | 0.9813 | 0.9810 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.2