freddie1

This is a LoRA derived from sayakpaul/FLUX.1-merged.

The main validation prompt used during training was:

a photo of a freddiefoodieking with glasses

Validation settings

  • CFG: 7.5
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a photo of a freddiefoodieking with glasses
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 79
  • Training steps: 2480
  • Learning rate: 0.0005
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 32
  • LoRA Alpha: 32.0
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

freddie1

  • Repeats: 0
  • Total number of images: 31
  • Total number of aspect buckets: 1
  • Resolution: 1024 px
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'sayakpaul/FLUX.1-merged'
adapter_id = 'ambientocclusion/freddie1'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "a photo of a freddiefoodieking with glasses"


pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
2
Inference Examples
Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ambientocclusion/freddie1

Adapter
(4)
this model