anas commited on
Commit
53e3dce
·
1 Parent(s): f3585a1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
- \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
- \\\\\\\\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- \\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -87,31 +87,31 @@ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]'
91
 
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- \\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
- \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
- \\\\\\\\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
- \\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
- \\\\\\\\twith torch.no_grad():
110
- \\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
- \\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
113
- \\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
- \\\\\\\\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
@@ -123,6 +123,6 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"],
123
 
124
  ## Training
125
 
126
- The Common Voice `train`, `validation`, datasets were used for training
127
 
128
  The script used for training can be found [here](...)
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ \\\\\\\\\\\\\\\\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]'
91
 
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ \\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ \\\\\\\\\\\\\\\\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ \\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ \\\\\\\\\\\\\\\\twith torch.no_grad():
110
+ \\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ \\\\\\\\\\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
113
+ \\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ \\\\\\\\\\\\\\\\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
 
123
 
124
  ## Training
125
 
126
+ The Common Voice Corpus 4 `train`, `validation`, datasets were used for training
127
 
128
  The script used for training can be found [here](...)