t5-small-finetuned-text2log-compute-metrics-v5-400

This model is a fine-tuned version of mrm8488/t5-small-finetuned-text2log on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5820
  • Bleu: 30.1378
  • Gen Len: 18.568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 23 1.5732 8.4784 17.3373
No log 2.0 46 1.1400 22.8492 18.8284
No log 3.0 69 0.9426 27.2247 18.787
No log 4.0 92 0.8110 26.0131 18.7101
No log 5.0 115 0.7559 24.1316 18.7988
No log 6.0 138 0.7102 25.4664 18.7692
No log 7.0 161 0.6807 26.2651 18.6923
No log 8.0 184 0.6575 27.5298 18.6213
No log 9.0 207 0.6369 28.8178 18.5976
No log 10.0 230 0.6250 27.2363 18.6864
No log 11.0 253 0.6143 28.7917 18.6391
No log 12.0 276 0.5973 29.6901 18.7041
No log 13.0 299 0.5864 29.6632 18.6568
No log 14.0 322 0.5827 29.874 18.6391
No log 15.0 345 0.5700 29.6188 18.6864
No log 16.0 368 0.5620 29.9895 18.7278
No log 17.0 391 0.5569 29.3883 18.7278
No log 18.0 414 0.5486 29.783 18.6864
No log 19.0 437 0.5520 29.4199 18.6568
No log 20.0 460 0.5496 28.8502 18.6923
No log 21.0 483 0.5495 29.2369 18.7337
0.8287 22.0 506 0.5411 29.1707 18.6923
0.8287 23.0 529 0.5325 28.8466 18.6923
0.8287 24.0 552 0.5388 29.2703 18.6746
0.8287 25.0 575 0.5288 28.7683 18.7278
0.8287 26.0 598 0.5299 28.3489 18.7337
0.8287 27.0 621 0.5314 28.2042 18.7278
0.8287 28.0 644 0.5159 29.5603 18.7574
0.8287 29.0 667 0.5163 28.8959 18.6982
0.8287 30.0 690 0.5170 30.0671 18.7219
0.8287 31.0 713 0.5202 28.9559 18.6686
0.8287 32.0 736 0.5181 28.1951 18.7574
0.8287 33.0 759 0.5134 28.2097 18.7041
0.8287 34.0 782 0.5134 28.0953 18.7574
0.8287 35.0 805 0.5165 28.4171 18.7988
0.8287 36.0 828 0.5195 28.7953 18.7633
0.8287 37.0 851 0.5185 29.1606 18.7633
0.8287 38.0 874 0.5192 29.5226 18.6805
0.8287 39.0 897 0.5178 28.425 18.7692
0.8287 40.0 920 0.5196 29.4795 18.7041
0.8287 41.0 943 0.5161 29.5127 18.7041
0.8287 42.0 966 0.5164 28.6225 18.7574
0.8287 43.0 989 0.5183 29.0629 18.6272
0.3866 44.0 1012 0.5174 28.6628 18.6213
0.3866 45.0 1035 0.5141 28.499 18.6213
0.3866 46.0 1058 0.5151 28.1309 18.6272
0.3866 47.0 1081 0.5167 29.8871 18.6391
0.3866 48.0 1104 0.5133 28.7513 18.6331
0.3866 49.0 1127 0.5188 28.3089 18.6213
0.3866 50.0 1150 0.5203 28.8714 18.6331
0.3866 51.0 1173 0.5263 28.7644 18.6331
0.3866 52.0 1196 0.5222 28.4817 18.6331
0.3866 53.0 1219 0.5307 28.8117 18.6272
0.3866 54.0 1242 0.5255 29.3844 18.6213
0.3866 55.0 1265 0.5264 29.7108 18.6213
0.3866 56.0 1288 0.5272 29.353 18.6331
0.3866 57.0 1311 0.5283 28.5792 18.6391
0.3866 58.0 1334 0.5301 29.9914 18.6272
0.3866 59.0 1357 0.5320 29.3162 18.6272
0.3866 60.0 1380 0.5380 29.2162 18.6272
0.3866 61.0 1403 0.5349 28.5292 18.6272
0.3866 62.0 1426 0.5313 28.7165 18.6627
0.3866 63.0 1449 0.5335 29.3637 18.6154
0.3866 64.0 1472 0.5350 29.3612 18.568
0.3866 65.0 1495 0.5330 29.1338 18.5621
0.283 66.0 1518 0.5322 29.0514 18.5562
0.283 67.0 1541 0.5362 29.2592 18.5562
0.283 68.0 1564 0.5379 29.6757 18.568
0.283 69.0 1587 0.5386 29.5012 18.5976
0.283 70.0 1610 0.5379 29.6616 18.5917
0.283 71.0 1633 0.5364 29.8762 18.6154
0.283 72.0 1656 0.5392 29.7143 18.6036
0.283 73.0 1679 0.5438 29.385 18.5976
0.283 74.0 1702 0.5386 28.3472 18.6095
0.283 75.0 1725 0.5372 29.1045 18.574
0.283 76.0 1748 0.5406 29.0839 18.6095
0.283 77.0 1771 0.5408 29.735 18.5799
0.283 78.0 1794 0.5406 29.5432 18.6036
0.283 79.0 1817 0.5413 29.1501 18.5976
0.283 80.0 1840 0.5434 29.5822 18.6095
0.283 81.0 1863 0.5491 29.1933 18.5799
0.283 82.0 1886 0.5473 28.9065 18.5385
0.283 83.0 1909 0.5507 29.4129 18.5385
0.283 84.0 1932 0.5534 29.2249 18.5385
0.283 85.0 1955 0.5561 29.6955 18.5799
0.283 86.0 1978 0.5575 29.1081 18.5385
0.2296 87.0 2001 0.5531 29.7633 18.5385
0.2296 88.0 2024 0.5548 30.045 18.5385
0.2296 89.0 2047 0.5567 29.9209 18.5385
0.2296 90.0 2070 0.5577 29.1879 18.5858
0.2296 91.0 2093 0.5602 29.1587 18.5799
0.2296 92.0 2116 0.5595 29.5205 18.5799
0.2296 93.0 2139 0.5605 29.3439 18.5325
0.2296 94.0 2162 0.5583 29.4742 18.5325
0.2296 95.0 2185 0.5576 29.132 18.5325
0.2296 96.0 2208 0.5566 29.0861 18.5325
0.2296 97.0 2231 0.5584 29.6618 18.5385
0.2296 98.0 2254 0.5593 29.1068 18.5325
0.2296 99.0 2277 0.5603 29.7081 18.5385
0.2296 100.0 2300 0.5599 29.6368 18.5325
0.2296 101.0 2323 0.5598 29.6263 18.5325
0.2296 102.0 2346 0.5637 29.6321 18.5385
0.2296 103.0 2369 0.5678 29.6306 18.5266
0.2296 104.0 2392 0.5685 29.3279 18.5325
0.2296 105.0 2415 0.5680 29.1363 18.5621
0.2296 106.0 2438 0.5726 29.2666 18.5385
0.2296 107.0 2461 0.5738 29.2981 18.5385
0.2296 108.0 2484 0.5740 29.5752 18.5385
0.1942 109.0 2507 0.5749 29.5596 18.5385
0.1942 110.0 2530 0.5732 29.6728 18.574
0.1942 111.0 2553 0.5738 29.6052 18.5325
0.1942 112.0 2576 0.5731 29.5143 18.574
0.1942 113.0 2599 0.5744 29.8059 18.574
0.1942 114.0 2622 0.5751 29.6796 18.574
0.1942 115.0 2645 0.5763 29.9279 18.568
0.1942 116.0 2668 0.5746 29.892 18.568
0.1942 117.0 2691 0.5741 29.8104 18.574
0.1942 118.0 2714 0.5759 29.6379 18.574
0.1942 119.0 2737 0.5777 29.7949 18.574
0.1942 120.0 2760 0.5776 29.6297 18.574
0.1942 121.0 2783 0.5789 29.5298 18.574
0.1942 122.0 2806 0.5794 29.6102 18.574
0.1942 123.0 2829 0.5799 29.7981 18.574
0.1942 124.0 2852 0.5811 30.0894 18.574
0.1942 125.0 2875 0.5826 29.9849 18.574
0.1942 126.0 2898 0.5829 29.8349 18.574
0.1942 127.0 2921 0.5817 29.6295 18.574
0.1942 128.0 2944 0.5809 29.5264 18.568
0.1942 129.0 2967 0.5813 29.5858 18.568
0.1942 130.0 2990 0.5843 29.6556 18.568
0.1777 131.0 3013 0.5836 30.0165 18.568
0.1777 132.0 3036 0.5835 29.8399 18.568
0.1777 133.0 3059 0.5824 29.8065 18.568
0.1777 134.0 3082 0.5821 29.8948 18.574
0.1777 135.0 3105 0.5808 29.9342 18.574
0.1777 136.0 3128 0.5810 29.7556 18.574
0.1777 137.0 3151 0.5813 30.0425 18.568
0.1777 138.0 3174 0.5822 30.0719 18.568
0.1777 139.0 3197 0.5823 30.0719 18.568
0.1777 140.0 3220 0.5828 30.1124 18.568
0.1777 141.0 3243 0.5826 30.1451 18.568
0.1777 142.0 3266 0.5828 30.1451 18.568
0.1777 143.0 3289 0.5829 30.1451 18.568
0.1777 144.0 3312 0.5829 30.1451 18.568
0.1777 145.0 3335 0.5825 30.1378 18.568
0.1777 146.0 3358 0.5824 30.1378 18.568
0.1777 147.0 3381 0.5822 30.1378 18.568
0.1777 148.0 3404 0.5820 30.1378 18.568
0.1777 149.0 3427 0.5821 30.1378 18.568
0.1777 150.0 3450 0.5820 30.1378 18.568

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.