|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xtreme_s |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xtreme_s_xlsr_300m_fleurs_langid_truncated |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xtreme_s_xlsr_300m_fleurs_langid_truncated |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.7236 |
|
- Loss: 1.3514 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:--------:|:---------------:| |
|
| 0.5296 | 0.26 | 1000 | 0.4016 | 2.6633 | |
|
| 0.4252 | 0.52 | 2000 | 0.5751 | 1.8582 | |
|
| 0.2989 | 0.78 | 3000 | 0.6332 | 1.6780 | |
|
| 0.3563 | 1.04 | 4000 | 0.6799 | 1.4479 | |
|
| 0.1617 | 1.3 | 5000 | 0.6679 | 1.5066 | |
|
| 0.1409 | 1.56 | 6000 | 0.6992 | 1.4082 | |
|
| 0.01 | 1.82 | 7000 | 0.7071 | 1.2448 | |
|
| 0.0018 | 2.08 | 8000 | 0.7148 | 1.1996 | |
|
| 0.0014 | 2.34 | 9000 | 0.6410 | 1.6505 | |
|
| 0.0188 | 2.6 | 10000 | 0.6840 | 1.4050 | |
|
| 0.0007 | 2.86 | 11000 | 0.6621 | 1.5831 | |
|
| 0.1038 | 3.12 | 12000 | 0.6829 | 1.5441 | |
|
| 0.0003 | 3.38 | 13000 | 0.6900 | 1.3483 | |
|
| 0.0004 | 3.64 | 14000 | 0.6414 | 1.7070 | |
|
| 0.0003 | 3.9 | 15000 | 0.7075 | 1.3198 | |
|
| 0.0002 | 4.16 | 16000 | 0.7105 | 1.3118 | |
|
| 0.0001 | 4.42 | 17000 | 0.7029 | 1.4099 | |
|
| 0.0 | 4.68 | 18000 | 0.7180 | 1.3658 | |
|
| 0.0001 | 4.93 | 19000 | 0.7236 | 1.3514 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0.dev0 |
|
- Pytorch 1.10.1+cu111 |
|
- Datasets 1.18.4.dev0 |
|
- Tokenizers 0.11.6 |
|
|