|
--- |
|
language: |
|
- all |
|
license: apache-2.0 |
|
tags: |
|
- minds14 |
|
- google/xtreme_s |
|
- generated_from_trainer |
|
datasets: |
|
- google/xtreme_s |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xtreme_s_xlsr_300m_minds14 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xtreme_s_xlsr_300m_minds14 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.ALL dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.9033 |
|
- Accuracy Cs-cz: 0.9164 |
|
- Accuracy De-de: 0.9477 |
|
- Accuracy En-au: 0.9235 |
|
- Accuracy En-gb: 0.9324 |
|
- Accuracy En-us: 0.9326 |
|
- Accuracy Es-es: 0.9177 |
|
- Accuracy Fr-fr: 0.9444 |
|
- Accuracy It-it: 0.9167 |
|
- Accuracy Ko-kr: 0.8649 |
|
- Accuracy Nl-nl: 0.9450 |
|
- Accuracy Pl-pl: 0.9146 |
|
- Accuracy Pt-pt: 0.8940 |
|
- Accuracy Ru-ru: 0.8667 |
|
- Accuracy Zh-cn: 0.7291 |
|
- F1: 0.9015 |
|
- F1 Cs-cz: 0.9154 |
|
- F1 De-de: 0.9467 |
|
- F1 En-au: 0.9199 |
|
- F1 En-gb: 0.9334 |
|
- F1 En-us: 0.9308 |
|
- F1 Es-es: 0.9158 |
|
- F1 Fr-fr: 0.9436 |
|
- F1 It-it: 0.9135 |
|
- F1 Ko-kr: 0.8642 |
|
- F1 Nl-nl: 0.9440 |
|
- F1 Pl-pl: 0.9159 |
|
- F1 Pt-pt: 0.8883 |
|
- F1 Ru-ru: 0.8646 |
|
- F1 Zh-cn: 0.7249 |
|
- Loss: 0.4119 |
|
- Loss Cs-cz: 0.3790 |
|
- Loss De-de: 0.2649 |
|
- Loss En-au: 0.3459 |
|
- Loss En-gb: 0.2853 |
|
- Loss En-us: 0.2203 |
|
- Loss Es-es: 0.2731 |
|
- Loss Fr-fr: 0.1909 |
|
- Loss It-it: 0.3520 |
|
- Loss Ko-kr: 0.5431 |
|
- Loss Nl-nl: 0.2515 |
|
- Loss Pl-pl: 0.4113 |
|
- Loss Pt-pt: 0.4798 |
|
- Loss Ru-ru: 0.6470 |
|
- Loss Zh-cn: 1.1216 |
|
- Predict Samples: 4086 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1500 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 2.6739 | 5.41 | 200 | 2.5687 | 0.0430 | 0.1190 | |
|
| 1.4953 | 10.81 | 400 | 1.6052 | 0.5550 | 0.5692 | |
|
| 0.6177 | 16.22 | 600 | 0.7927 | 0.8052 | 0.8011 | |
|
| 0.3609 | 21.62 | 800 | 0.5679 | 0.8609 | 0.8609 | |
|
| 0.4972 | 27.03 | 1000 | 0.5944 | 0.8509 | 0.8523 | |
|
| 0.1799 | 32.43 | 1200 | 0.6194 | 0.8623 | 0.8621 | |
|
| 0.1308 | 37.84 | 1400 | 0.5956 | 0.8569 | 0.8548 | |
|
| 0.2298 | 43.24 | 1600 | 0.5201 | 0.8732 | 0.8743 | |
|
| 0.0052 | 48.65 | 1800 | 0.3826 | 0.9106 | 0.9103 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0.dev0 |
|
- Pytorch 1.10.2+cu113 |
|
- Datasets 2.0.1.dev0 |
|
- Tokenizers 0.11.6 |
|
|