metadata
base_model: Alibaba-NLP/gte-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:32833
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Anonymity in online interactions can lead to a disinhibition effect, where
individuals feel free to express hostile or aggressive opinions they might
otherwise suppress.
sentences:
- What are the implications of anonymity in online interactions?
- >-
How does creativity function as a form of costly signalling in personal
expressions such as invitations?
- Why is conflict considered essential in a creative organization?
- source_sentence: >-
The author decides to release their novel into the world despite its
imperfections, and finds that this allows them to move on to new projects
and experiences, and to focus on the value of the work itself rather than
its flaws.
sentences:
- >-
How does the author's experience with their novel illustrate the concept
of 'embracing imperfection' in creative work?
- >-
What does the author mean by 'ambitious programmers are better off doing
their own thing'?
- What is the role of 'show me' in the design process?
- source_sentence: >-
Tokens become more valuable as more users adopt them, creating a positive
feedback loop that enhances their utility and encourages further adoption
across various applications.
sentences:
- In what ways do tokens exhibit network effects?
- >-
What can sometimes be found when considering a startup with a
lame-sounding idea?
- >-
How do social norms influence decision-making in the context of airport
choices?
- source_sentence: >-
Philosophers are often viewed as the guardians of critical thinking;
however, their reliance on bureaucratic structures and abstract
discussions can become problematic. Instead of fostering open-mindedness,
they may perpetuate dogmatic thinking and limit the exploration of diverse
perspectives, thereby failing to fulfill their duty of promoting genuine
critical engagement.
sentences:
- >-
In what ways can the role of philosophers be seen as essential or
problematic within the context of critical thinking?
- >-
How does the evolution of pair-bonding facilitate cultural exchange
between groups?
- What is the role of autonomy in the success of acquired startups?
- source_sentence: >-
Society tends to admire those who despair when others hope, viewing them
as sages or wise figures.
sentences:
- >-
What is often the societal perception of those who express pessimism
about the future?
- >-
How did the realization about user engagement influence the app
development strategy?
- >-
What lessons can be learned from the historical context of employee
relations in large corporations?
model-index:
- name: Custom Embedding Test - Anudit Nagar
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7683027145599123
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8755141211955032
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9097888675623801
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9465313956676721
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7683027145599123
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29183804039850103
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18195777351247602
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09465313956676721
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7683027145599123
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8755141211955032
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9097888675623801
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9465313956676721
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8566925927271383
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8279207524340517
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8302321946792381
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.762818755141212
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8700301617768028
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9062242939402249
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.946257197696737
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.762818755141212
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2900100539256009
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18124485878804497
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09462571976967371
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.762818755141212
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8700301617768028
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9062242939402249
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.946257197696737
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8529743473843932
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8231949721667308
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.825407004380477
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.762818755141212
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8683849739511927
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9015629284343296
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9418700301617768
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.762818755141212
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28946165798373086
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18031258568686592
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09418700301617768
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.762818755141212
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8683849739511927
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9015629284343296
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9418700301617768
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.850685453111757
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8215859088357048
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8239714751253995
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7573347957225116
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8634494104743625
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8952563751028242
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9347408829174664
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7573347957225116
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2878164701581208
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17905127502056484
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09347408829174664
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7573347957225116
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8634494104743625
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8952563751028242
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9347408829174664
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8445055968214926
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8157123053956075
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8184088689781863
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7419797093501508
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8530298875788319
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8859336440910337
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9284343295859611
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7419797093501508
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28434329585961066
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17718672881820677
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09284343295859611
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7419797093501508
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8530298875788319
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8859336440910337
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9284343295859611
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8334906130922063
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8032139919307455
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8057146368194794
name: Cosine Map@100
Custom Embedding Test - Anudit Nagar
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Society tends to admire those who despair when others hope, viewing them as sages or wise figures.',
'What is often the societal perception of those who express pessimism about the future?',
'How did the realization about user engagement influence the app development strategy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7683 |
cosine_accuracy@3 |
0.8755 |
cosine_accuracy@5 |
0.9098 |
cosine_accuracy@10 |
0.9465 |
cosine_precision@1 |
0.7683 |
cosine_precision@3 |
0.2918 |
cosine_precision@5 |
0.182 |
cosine_precision@10 |
0.0947 |
cosine_recall@1 |
0.7683 |
cosine_recall@3 |
0.8755 |
cosine_recall@5 |
0.9098 |
cosine_recall@10 |
0.9465 |
cosine_ndcg@10 |
0.8567 |
cosine_mrr@10 |
0.8279 |
cosine_map@100 |
0.8302 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7628 |
cosine_accuracy@3 |
0.87 |
cosine_accuracy@5 |
0.9062 |
cosine_accuracy@10 |
0.9463 |
cosine_precision@1 |
0.7628 |
cosine_precision@3 |
0.29 |
cosine_precision@5 |
0.1812 |
cosine_precision@10 |
0.0946 |
cosine_recall@1 |
0.7628 |
cosine_recall@3 |
0.87 |
cosine_recall@5 |
0.9062 |
cosine_recall@10 |
0.9463 |
cosine_ndcg@10 |
0.853 |
cosine_mrr@10 |
0.8232 |
cosine_map@100 |
0.8254 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7628 |
cosine_accuracy@3 |
0.8684 |
cosine_accuracy@5 |
0.9016 |
cosine_accuracy@10 |
0.9419 |
cosine_precision@1 |
0.7628 |
cosine_precision@3 |
0.2895 |
cosine_precision@5 |
0.1803 |
cosine_precision@10 |
0.0942 |
cosine_recall@1 |
0.7628 |
cosine_recall@3 |
0.8684 |
cosine_recall@5 |
0.9016 |
cosine_recall@10 |
0.9419 |
cosine_ndcg@10 |
0.8507 |
cosine_mrr@10 |
0.8216 |
cosine_map@100 |
0.824 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7573 |
cosine_accuracy@3 |
0.8634 |
cosine_accuracy@5 |
0.8953 |
cosine_accuracy@10 |
0.9347 |
cosine_precision@1 |
0.7573 |
cosine_precision@3 |
0.2878 |
cosine_precision@5 |
0.1791 |
cosine_precision@10 |
0.0935 |
cosine_recall@1 |
0.7573 |
cosine_recall@3 |
0.8634 |
cosine_recall@5 |
0.8953 |
cosine_recall@10 |
0.9347 |
cosine_ndcg@10 |
0.8445 |
cosine_mrr@10 |
0.8157 |
cosine_map@100 |
0.8184 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.742 |
cosine_accuracy@3 |
0.853 |
cosine_accuracy@5 |
0.8859 |
cosine_accuracy@10 |
0.9284 |
cosine_precision@1 |
0.742 |
cosine_precision@3 |
0.2843 |
cosine_precision@5 |
0.1772 |
cosine_precision@10 |
0.0928 |
cosine_recall@1 |
0.742 |
cosine_recall@3 |
0.853 |
cosine_recall@5 |
0.8859 |
cosine_recall@10 |
0.9284 |
cosine_ndcg@10 |
0.8335 |
cosine_mrr@10 |
0.8032 |
cosine_map@100 |
0.8057 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 32,833 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 3 tokens
- mean: 34.54 tokens
- max: 102 tokens
|
- min: 9 tokens
- mean: 16.78 tokens
- max: 77 tokens
|
- Samples:
positive |
anchor |
The author saw taking risks as a necessary part of the creative process, and was willing to take risks in order to explore new ideas and themes. |
What was the author's perspective on the importance of taking risks in creative work? |
Recognizing that older users are less likely to invite new users led to a strategic focus on younger demographics, prompting a shift in development efforts toward creating products that resonate with teens. |
How did the realization about user engagement influence the app development strategy? |
The phrase emphasizes the fragility of Earth and our collective responsibility to protect it and ensure sustainable resource management for future generations. |
What is the significance of the phrase 'pale blue dot' in relation to environmental responsibility? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 0.0002
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
load_best_model_at_end
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 0.0002
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.1558 |
10 |
0.7195 |
- |
- |
- |
- |
- |
0.3116 |
20 |
0.324 |
- |
- |
- |
- |
- |
0.4674 |
30 |
0.238 |
- |
- |
- |
- |
- |
0.6232 |
40 |
0.2265 |
- |
- |
- |
- |
- |
0.7790 |
50 |
0.1825 |
- |
- |
- |
- |
- |
0.9348 |
60 |
0.1938 |
- |
- |
- |
- |
- |
0.9971 |
64 |
- |
0.8054 |
0.8198 |
0.8276 |
0.7796 |
0.8329 |
1.0906 |
70 |
0.1397 |
- |
- |
- |
- |
- |
1.2463 |
80 |
0.0611 |
- |
- |
- |
- |
- |
1.4021 |
90 |
0.0506 |
- |
- |
- |
- |
- |
1.5579 |
100 |
0.047 |
- |
- |
- |
- |
- |
1.7137 |
110 |
0.0327 |
- |
- |
- |
- |
- |
1.8695 |
120 |
0.034 |
- |
- |
- |
- |
- |
1.9942 |
128 |
- |
0.8036 |
0.8135 |
0.8187 |
0.7861 |
0.8243 |
2.0253 |
130 |
0.0319 |
- |
- |
- |
- |
- |
2.1811 |
140 |
0.0347 |
- |
- |
- |
- |
- |
2.3369 |
150 |
0.021 |
- |
- |
- |
- |
- |
2.4927 |
160 |
0.0169 |
- |
- |
- |
- |
- |
2.6485 |
170 |
0.0135 |
- |
- |
- |
- |
- |
2.8043 |
180 |
0.0123 |
- |
- |
- |
- |
- |
2.9601 |
190 |
0.0111 |
- |
- |
- |
- |
- |
2.9912 |
192 |
- |
0.8109 |
0.8179 |
0.8213 |
0.7973 |
0.8264 |
3.1159 |
200 |
0.0083 |
- |
- |
- |
- |
- |
3.2717 |
210 |
0.0088 |
- |
- |
- |
- |
- |
3.4275 |
220 |
0.005 |
- |
- |
- |
- |
- |
3.5833 |
230 |
0.005 |
- |
- |
- |
- |
- |
3.7390 |
240 |
0.0043 |
- |
- |
- |
- |
- |
3.8948 |
250 |
0.0058 |
- |
- |
- |
- |
- |
3.9883 |
256 |
- |
0.8163 |
0.8244 |
0.8260 |
0.8045 |
0.8287 |
4.0506 |
260 |
0.0057 |
- |
- |
- |
- |
- |
4.2064 |
270 |
0.0035 |
- |
- |
- |
- |
- |
4.3622 |
280 |
0.0033 |
- |
- |
- |
- |
- |
4.5180 |
290 |
0.0032 |
- |
- |
- |
- |
- |
4.6738 |
300 |
0.0031 |
- |
- |
- |
- |
- |
4.8296 |
310 |
0.0038 |
- |
- |
- |
- |
- |
4.9854 |
320 |
0.0042 |
0.8184 |
0.8240 |
0.8254 |
0.8057 |
0.8302 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.5
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}