metadata
language:
- bg
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M - Bulgarian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: bg
metrics:
- name: Test WER
type: wer
value: 21.195
- name: Test CER
type: cer
value: 4.786
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: bg
metrics:
- name: Test WER
type: wer
value: 32.667
- name: Test CER
type: cer
value: 12.452
XLS-R-300M - Bulgarian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set:
- Loss: 0.2473
- Wer: 0.3002
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.1589 | 3.48 | 400 | 3.0830 | 1.0 |
2.8921 | 6.96 | 800 | 2.6605 | 0.9982 |
1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 |
1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 |
1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 |
0.999 | 20.87 | 2400 | 0.3541 | 0.4343 |
0.945 | 24.35 | 2800 | 0.3266 | 0.4132 |
0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 |
0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 |
0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 |
0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 |
0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 |
0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 |
0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "и надутият му ката блоонкурем взе да се събира"
Eval results on Common Voice 8 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
30.07 | 21.195 |