anton-l's picture
anton-l HF staff
Upload README.md
a83a9f4
|
raw
history blame
5.1 kB
metadata
language:
  - lv
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: XLS-R-300M - Latvian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 9.633
          - name: Test CER
            type: cer
            value: 2.614
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 36.11
          - name: Test CER
            type: cer
            value: 14.244
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 44.12

XLS-R-300M - Latvian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1660
  • Wer: 0.1705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.489 2.56 400 3.3590 1.0
2.9903 5.13 800 2.9704 1.0001
1.6712 7.69 1200 0.6179 0.6566
1.2635 10.26 1600 0.3176 0.4531
1.0819 12.82 2000 0.2517 0.3508
1.0136 15.38 2400 0.2257 0.3124
0.9625 17.95 2800 0.1975 0.2311
0.901 20.51 3200 0.1986 0.2097
0.8842 23.08 3600 0.1904 0.2039
0.8542 25.64 4000 0.1847 0.1981
0.8244 28.21 4400 0.1805 0.1847
0.7689 30.77 4800 0.1736 0.1832
0.7825 33.33 5200 0.1698 0.1821
0.7817 35.9 5600 0.1758 0.1803
0.7488 38.46 6000 0.1663 0.1760
0.7171 41.03 6400 0.1636 0.1721
0.7222 43.59 6800 0.1663 0.1729
0.7156 46.15 7200 0.1633 0.1715
0.7121 48.72 7600 0.1666 0.1718

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "domāju ka viņam viss labi"

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
16.997 9.633