anton-l's picture
anton-l HF staff
Upload README.md
095796f
---
language:
- mt
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
model-index:
- name: XLS-R-300M - Maltese
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice 8
args: mt
metrics:
- type: wer
value: 15.967
name: Test WER
- name: Test CER
type: cer
value: 3.657
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Maltese
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1895
- Wer: 0.1984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4219 | 3.6 | 400 | 3.3127 | 1.0 |
| 3.0399 | 7.21 | 800 | 3.0330 | 1.0 |
| 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 |
| 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 |
| 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 |
| 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 |
| 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 |
| 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 |
| 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 |
| 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 |
| 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 |
| 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 |
| 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 |
| 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 |
| 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 |
| 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "għadu jilagħbu ċirku tant bilfondi"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 19.853 | 15.967 |