apwic's picture
End of training
3bb65ff verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-lora-r2a1d0.15
    results: []

nerugm-lora-r2a1d0.15

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1346
  • Precision: 0.7342
  • Recall: 0.8652
  • F1: 0.7943
  • Accuracy: 0.9555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.79 1.0 528 0.4638 0.3302 0.0813 0.1305 0.8595
0.3919 2.0 1056 0.2519 0.5954 0.6729 0.6318 0.9275
0.2386 3.0 1584 0.1927 0.6540 0.7908 0.7159 0.9382
0.193 4.0 2112 0.1677 0.6826 0.8234 0.7464 0.9448
0.1712 5.0 2640 0.1594 0.6959 0.8443 0.7629 0.9476
0.1596 6.0 3168 0.1544 0.7082 0.8559 0.7751 0.9498
0.1524 7.0 3696 0.1519 0.7012 0.8605 0.7728 0.9506
0.1452 8.0 4224 0.1461 0.7203 0.8605 0.7842 0.9522
0.1397 9.0 4752 0.1432 0.7263 0.8559 0.7858 0.9535
0.1369 10.0 5280 0.1394 0.7258 0.8536 0.7845 0.9539
0.1336 11.0 5808 0.1375 0.7321 0.8512 0.7872 0.9543
0.1305 12.0 6336 0.1375 0.7345 0.8536 0.7896 0.9547
0.1281 13.0 6864 0.1351 0.7330 0.8536 0.7887 0.9547
0.1252 14.0 7392 0.1360 0.7342 0.8652 0.7943 0.9553
0.124 15.0 7920 0.1364 0.7292 0.8559 0.7875 0.9541
0.1234 16.0 8448 0.1351 0.7260 0.8605 0.7876 0.9549
0.1224 17.0 8976 0.1357 0.7299 0.8652 0.7918 0.9549
0.1208 18.0 9504 0.1360 0.7333 0.8675 0.7948 0.9553
0.1201 19.0 10032 0.1350 0.7347 0.8675 0.7956 0.9555
0.1205 20.0 10560 0.1346 0.7342 0.8652 0.7943 0.9555

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2