apwic's picture
End of training
7f77eb7 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-lora-r8a0d0.15
    results: []

nerugm-lora-r8a0d0.15

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1281
  • Precision: 0.7470
  • Recall: 0.8629
  • F1: 0.8008
  • Accuracy: 0.9579

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7018 1.0 528 0.3353 0.5529 0.4800 0.5138 0.9115
0.2639 2.0 1056 0.1912 0.6494 0.8210 0.7252 0.9412
0.1862 3.0 1584 0.1672 0.6739 0.8536 0.7531 0.9466
0.1612 4.0 2112 0.1446 0.7238 0.8512 0.7824 0.9539
0.1439 5.0 2640 0.1390 0.7254 0.8582 0.7863 0.9545
0.1358 6.0 3168 0.1392 0.7256 0.8652 0.7893 0.9551
0.129 7.0 3696 0.1384 0.7267 0.8698 0.7919 0.9561
0.1228 8.0 4224 0.1339 0.7353 0.8698 0.7969 0.9575
0.1168 9.0 4752 0.1321 0.7439 0.8559 0.7960 0.9577
0.1146 10.0 5280 0.1300 0.7445 0.8582 0.7973 0.9581
0.1105 11.0 5808 0.1327 0.7333 0.8675 0.7948 0.9571
0.1083 12.0 6336 0.1333 0.7342 0.8652 0.7943 0.9569
0.106 13.0 6864 0.1265 0.7490 0.8582 0.7999 0.9591
0.1032 14.0 7392 0.1269 0.7445 0.8582 0.7973 0.9589
0.1023 15.0 7920 0.1291 0.7455 0.8629 0.7999 0.9585
0.1014 16.0 8448 0.1271 0.7400 0.8582 0.7947 0.9575
0.1002 17.0 8976 0.1281 0.7460 0.8722 0.8042 0.9589
0.0986 18.0 9504 0.1304 0.7416 0.8722 0.8016 0.9573
0.0978 19.0 10032 0.1271 0.7520 0.8652 0.8046 0.9589
0.0984 20.0 10560 0.1281 0.7470 0.8629 0.8008 0.9579

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2