sentiment-base-1 / README.md
apwic's picture
End of training
eb7e226 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-base-1
    results: []

sentiment-base-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7908
  • Accuracy: 0.9023
  • Precision: 0.8875
  • Recall: 0.8733
  • F1: 0.8799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3889 1.0 122 0.4200 0.8045 0.8255 0.6867 0.7110
0.2335 2.0 244 0.3136 0.8922 0.8644 0.8863 0.8739
0.1411 3.0 366 0.3569 0.8972 0.8781 0.8723 0.8751
0.1078 4.0 488 0.3537 0.9148 0.8923 0.9072 0.8992
0.0822 5.0 610 0.5069 0.8797 0.8795 0.8224 0.8439
0.0529 6.0 732 0.4262 0.9073 0.8862 0.8919 0.8890
0.0365 7.0 854 0.5586 0.8972 0.8743 0.8798 0.8770
0.033 8.0 976 0.5012 0.8947 0.8870 0.8530 0.8675
0.0248 9.0 1098 0.5833 0.8922 0.8873 0.8462 0.8631
0.0123 10.0 1220 0.6611 0.9023 0.8858 0.8758 0.8806
0.0088 11.0 1342 0.6936 0.8947 0.8847 0.8555 0.8682
0.0074 12.0 1464 0.6790 0.9023 0.8858 0.8758 0.8806
0.0141 13.0 1586 0.6981 0.8972 0.8830 0.8648 0.8731
0.0034 14.0 1708 0.7145 0.8972 0.8781 0.8723 0.8751
0.0059 15.0 1830 0.7304 0.8997 0.8871 0.8666 0.8759
0.0056 16.0 1952 0.7518 0.8997 0.8778 0.8816 0.8797
0.0039 17.0 2074 0.7390 0.9023 0.8893 0.8708 0.8793
0.004 18.0 2196 0.7641 0.9023 0.8875 0.8733 0.8799
0.007 19.0 2318 0.7848 0.9023 0.8875 0.8733 0.8799
0.0042 20.0 2440 0.7908 0.9023 0.8875 0.8733 0.8799

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2