apwic's picture
End of training
e16965a verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r4a0d0.15-1
    results: []

sentiment-lora-r4a0d0.15-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3312
  • Accuracy: 0.8622
  • Precision: 0.8414
  • Recall: 0.8175
  • F1: 0.8279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.566 1.0 122 0.5206 0.7143 0.6484 0.6353 0.6403
0.5117 2.0 244 0.5062 0.7343 0.6880 0.7045 0.6939
0.4804 3.0 366 0.4667 0.7669 0.7182 0.7126 0.7152
0.4345 4.0 488 0.4350 0.7920 0.7494 0.7403 0.7445
0.4081 5.0 610 0.4337 0.7945 0.7565 0.7846 0.7661
0.3793 6.0 732 0.3923 0.8195 0.7857 0.7673 0.7753
0.3665 7.0 854 0.3765 0.8296 0.7949 0.7919 0.7934
0.3471 8.0 976 0.3681 0.8371 0.8089 0.7872 0.7966
0.3498 9.0 1098 0.3677 0.8321 0.8024 0.7812 0.7904
0.3282 10.0 1220 0.3634 0.8346 0.8074 0.7805 0.7917
0.3149 11.0 1342 0.3537 0.8446 0.8180 0.7976 0.8065
0.3092 12.0 1464 0.3529 0.8496 0.8202 0.8136 0.8167
0.3135 13.0 1586 0.3471 0.8521 0.8332 0.7979 0.8122
0.3103 14.0 1708 0.3427 0.8622 0.8430 0.8150 0.8269
0.2974 15.0 1830 0.3372 0.8622 0.8385 0.8225 0.8298
0.2905 16.0 1952 0.3345 0.8697 0.8488 0.8303 0.8386
0.2895 17.0 2074 0.3339 0.8622 0.8430 0.8150 0.8269
0.2922 18.0 2196 0.3319 0.8697 0.8488 0.8303 0.8386
0.2843 19.0 2318 0.3319 0.8622 0.8430 0.8150 0.8269
0.287 20.0 2440 0.3312 0.8622 0.8414 0.8175 0.8279

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2