summarization-base-1
This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7271
- Rouge1: 0.4977
- Rouge2: 0.0
- Rougel: 0.4973
- Rougelsum: 0.495
- Gen Len: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.5441 | 1.0 | 3566 | 0.9228 | 0.4926 | 0.0 | 0.4922 | 0.4906 | 1.0 |
0.8328 | 2.0 | 7132 | 0.7919 | 0.5283 | 0.0 | 0.5307 | 0.5279 | 1.0 |
0.638 | 3.0 | 10698 | 0.7150 | 0.5054 | 0.0 | 0.508 | 0.5029 | 1.0 |
0.4847 | 4.0 | 14264 | 0.6917 | 0.5137 | 0.0 | 0.5162 | 0.5168 | 1.0 |
0.3378 | 5.0 | 17830 | 0.7271 | 0.4977 | 0.0 | 0.4973 | 0.495 | 1.0 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 17
Model tree for apwic/summarization-base-1
Base model
LazarusNLP/IndoNanoT5-base