metadata
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: summarization-lora-3
results: []
summarization-lora-3
This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5917
- Rouge1: 0.3832
- Rouge2: 0.0
- Rougel: 0.3816
- Rougelsum: 0.3824
- Gen Len: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.2253 | 1.0 | 1784 | 0.6577 | 0.4006 | 0.0 | 0.3969 | 0.4007 | 1.0 |
0.7893 | 2.0 | 3568 | 0.6133 | 0.4188 | 0.0 | 0.4167 | 0.4194 | 1.0 |
0.7351 | 3.0 | 5352 | 0.6062 | 0.3925 | 0.0 | 0.3898 | 0.3908 | 1.0 |
0.7092 | 4.0 | 7136 | 0.5990 | 0.3834 | 0.0 | 0.381 | 0.3826 | 1.0 |
0.6978 | 5.0 | 8920 | 0.5917 | 0.3832 | 0.0 | 0.3816 | 0.3824 | 1.0 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1