This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1092
  • Wer: 0.1752
  • Cer: 0.0323

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.7005 1.61 500 0.4082 0.5584 0.1164
1.1555 3.22 1000 0.2020 0.2953 0.0557
1.0927 4.82 1500 0.1708 0.2584 0.0480
1.0707 6.43 2000 0.1563 0.2405 0.0450
1.0728 8.04 2500 0.1620 0.2442 0.0463
1.0268 9.65 3000 0.1588 0.2378 0.0458
1.0328 11.25 3500 0.1466 0.2352 0.0442
1.0249 12.86 4000 0.1552 0.2341 0.0449
1.016 14.47 4500 0.1602 0.2435 0.0473
1.0164 16.08 5000 0.1491 0.2337 0.0444
0.9935 17.68 5500 0.1539 0.2373 0.0458
0.9626 19.29 6000 0.1458 0.2305 0.0434
0.9505 20.9 6500 0.1368 0.2157 0.0407
0.9389 22.51 7000 0.1437 0.2231 0.0426
0.9129 24.12 7500 0.1313 0.2076 0.0394
0.9118 25.72 8000 0.1292 0.2040 0.0384
0.8848 27.33 8500 0.1299 0.2028 0.0384
0.8667 28.94 9000 0.1228 0.1945 0.0367
0.8641 30.55 9500 0.1223 0.1939 0.0364
0.8516 32.15 10000 0.1184 0.1876 0.0349
0.8379 33.76 10500 0.1137 0.1821 0.0338
0.8235 35.37 11000 0.1127 0.1779 0.0331
0.8112 36.98 11500 0.1103 0.1766 0.0327
0.8069 38.59 12000 0.1092 0.1752 0.0323

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train arampacha/wav2vec2-xls-r-1b-uk

Space using arampacha/wav2vec2-xls-r-1b-uk 1

Evaluation results