Virtuoso-Small / README.md
Crystalcareai's picture
Adding Evaluation Results (#1)
6e4dc29 verified
|
raw
history blame
6.12 kB
metadata
license: apache-2.0
base_model:
  - Qwen/Qwen2.5-14B
model-index:
  - name: Virtuoso-Small
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 79.35
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 50.4
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 34.29
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.52
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 14.44
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 46.57
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
          name: Open LLM Leaderboard
Virtuoso-Small

GGUF Available Here

Virtuoso-Small

Virtuoso-Small is the debut public release of the Virtuoso series of models by Arcee.ai, designed to bring cutting-edge generative AI capabilities to organizations and developers in a compact, efficient form. With 14 billion parameters, Virtuoso-Small is an accessible entry point for high-quality instruction-following, complex reasoning, and business-oriented generative AI tasks. Its larger siblings, Virtuoso-Forte and Virtuoso-Prime, offer even greater capabilities and are available via API at models.arcee.ai.

Performance Benchmarks

Groups Metric Value ± Stderr
Leaderboard Accuracy 0.5194 ± 0.0046
Normalized Accuracy 0.5814 ± 0.0051
Exact Match 0.3006 ± 0.0117
Instruction-Level Loose Accuracy 0.8489 ± N/A
Instruction-Level Strict Accuracy 0.8249 ± N/A
Prompt-Level Loose Accuracy 0.7856 ± 0.0177
Prompt-Level Strict Accuracy 0.7523 ± 0.0186
Leaderboard-BBH Normalized Accuracy 0.6516 ± 0.0058
Leaderboard-GPQA Normalized Accuracy 0.3389 ± 0.0137
Leaderboard-Math-Hard Exact Match 0.3006 ± 0.0117
Leaderboard-MuSR Normalized Accuracy 0.4286 ± 0.0175

Key Features

  • Compact and Efficient: With 14 billion parameters, Virtuoso-Small provides a high-performance solution optimized for smaller hardware configurations without sacrificing quality.
  • Business-Oriented: Tailored for use cases such as customer support, content creation, and technical assistance, Virtuoso-Small meets the demands of modern enterprises.
  • Scalable Ecosystem: Part of the Virtuoso series, Virtuoso-Small is fully interoperable with its larger siblings, Forte and Prime, enabling seamless scaling as your needs grow.

Deployment Options

Virtuoso-Small is available under the Apache-2.0 license and can be deployed locally or accessed through an API at models.arcee.ai. For larger-scale or more demanding applications, consider Virtuoso-Forte or Virtuoso-Prime.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 39.43
IFEval (0-Shot) 79.35
BBH (3-Shot) 50.40
MATH Lvl 5 (4-Shot) 34.29
GPQA (0-shot) 11.52
MuSR (0-shot) 14.44
MMLU-PRO (5-shot) 46.57