YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Load a model via load_corrector

If you have trained you own custom models using vec2text, you can load them in using the load_corrector function.

def load_corrector(embedder: str) -> vec2text.trainers.Corrector:
    """Gets the Corrector object for the given embedder.

    For now, we just support inverting OpenAI Ada 002 embeddings; we plan to
    expand this support over time.
    """
    assert (
        embedder in SUPPORTED_MODELS
    ), f"embedder to invert `{embedder} not in list of supported models: {SUPPORTED_MODELS}`"


    if embedder == "text-embedding-bge":
            inversion_model = vec2text.models.InversionModel.from_pretrained(
                "ariya2357/vec2text/bge_msl48_inversion_50epochs"
            )
            model = vec2text.models.CorrectorEncoderModel.from_pretrained(
                "ariya2357/vec2text/bge_msl48_corrector_100epochs"
            )
from api import load_corrector

corrector = load_corrector("text-embedding-bge")

Invert embeddings with invert_embeddings

take BGE as embedder:

class BGE(BertModel):
    def __init__(self, config):
        super().__init__(config)
        self.model_parallel = False
    
    def forward(self, input_ids, attention_mask):
        last_hidden_state = super().forward(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        output = last_hidden_state[:, 0]
        output = F.normalize(output, p=2, dim=1)
        return output

def get_embeddings_bge(text_list) -> torch.Tensor:
    tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5",do_lower_case=True)
    model = BGE.from_pretrained("BAAI/bge-base-en-v1.5")
    encoding = tokenizer(text,add_special_tokens = True, max_length = 48)

    with torch.no_grad():
        embedding = model(torch.tensor(encoding['input_ids']).unsqueeze(0),torch.tensor(encoding['attention_mask']).unsqueeze(0))

    return embedding
from api import load_corrector,invert_embeddings
embedding = get_embeddings_bge("hello world")

corrector = load_corrector("text-embedding-bge")

inverted_text = invert_embeddings(
    embeddings=embedding.cuda(),
    corrector=corrector,
    num_steps=20,
)
print(inverted_text)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .