artefucktor's picture
Update README.md
225ab39
|
raw
history blame
2.54 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
language:
  - ru
  - en
base_model: sentence-transformers/LaBSE
inference: true
widget:
  - source_sentence: Москва
    sentences:
      - Moscow
      - Mytishchi
      - Meshchera
    example_title: Geonames cities
license: apache-2.0

LaBSE_geonames_RU_RELOCATION

This is a sentence-transformers model: It maps geonames to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model fine tuned on geonames cities500 RU and popular relocation countries.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
cities = ["Vladivostok", "Moscow"]

model = SentenceTransformer('artefucktor/LaBSE_geonames_RU_RELOCATION')
embeddings = model.encode(cities)
print(embeddings)

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 23984 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)

Citing & Authors