arun100's picture
End of training
1b6e703 verified
metadata
language:
  - fr
license: apache-2.0
base_model: qanastek/whisper-small-french-uncased
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Base French
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 fr
          type: mozilla-foundation/common_voice_16_0
          config: fr
          split: test
          args: fr
        metrics:
          - name: Wer
            type: wer
            value: 15.184536972434753

Whisper Base French

This model is a fine-tuned version of qanastek/whisper-small-french-uncased on the mozilla-foundation/common_voice_16_0 fr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8014
  • Wer: 15.1845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9295 0.2 100 0.8014 15.1845
0.2976 0.4 200 0.4207 16.0289
0.2699 0.59 300 0.3999 15.8267
0.2773 0.79 400 0.3910 15.7267
0.2631 0.99 500 0.3863 15.5972
0.2487 1.19 600 0.3834 15.5907
0.2477 1.39 700 0.3814 15.6156
0.2428 1.59 800 0.3801 15.4902
0.2492 1.78 900 0.3794 15.4672
0.2471 1.98 1000 0.3791 15.4707

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0