File size: 26,279 Bytes
ac3ec7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
---
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
language:
- en
- ar
- pt
- es
- de
- th
library_name: sentence-transformers
license: apache-2.0
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:178008
- loss:CosineSimilarityLoss
widget:
- source_sentence: 'PHOTOS: Giant human skeleton found in cave by Khao Khanap Nam
    A unique discovery of the giant skeleton. Giant possibly killed by a snake. Important
    discovery made by paleontologists. Group of scientists unearthing remains of a
    human skeleton of gigantic proportions. Do we finally have irrefutable proof that
    human giants existed?'
  sentences:
  - The skeleton that appears in the photographs belongs to a giant human. It is an
    important discovery made by paleontologists.
  - تم بعون الله شراء خصله شعر رسول الله واودعت اخيرا في دبي بعد شراءها من متحف قرطبة
    بأسبانيا صلو على رسول الله
  - Photo shows a 2015 visit by then-US president Barack Obama, infectious diseases
    expert Dr. Anthony Fauci and philanthropist Melinda Gates to a laboratory in China’s
    Wuhan
- source_sentence: iris o preventable ALL OR PATRIC emergency operations center medical
    PH manual wennilindered J -Phansuk c
  sentences:
  - Bolivianos cruzan frontera para votar en legislativas nacionales argentinas
  - Note that the pH of the coronavirus ranges from 5.5 to 8.5. So, all we have to
    do, to eliminate the virus, is consume more alkaline foods, above the acid level
    of the virus. Such as; Bananas, Lime  9.9 pH, Yellow Lemon  8.2 pH, Avocado
    - 15.6 pH, Garlic - 13.2 pH, Mango - 8.7 pH, Tangerine - 8.5 pH, Pineapple - 12.7
    pH, Watercress - 22.7 pH, oranges - 9.2 pH
  - El aseo bucal extremo cura y previene el covid-19
- source_sentence: 'ACCORDING TO THE PENDLES 4/22/240 FROM TV AND POLLERS -CASTLE
    - KEY KO - FAILED - DOES NOT KNOW THE 4.1% 26% fifteen%. 18% HANDLING CASTLE:
    41%. KEYKO: 26 + 15 +18 = 59% AST MANIPULATE AND PREPARE THE FRAUD AND THE DECEIT.'
  sentences:
  - A Spanish scientist declares that soccer players like Messi and Ronaldo earn 1
    million euros per month and researchers who fight against COVID-19 1,800 euros
    per month
  - White and flawed votes join Keiko Fujimori in the survey
  - The Oxford and Sinovac Biotech vaccines were tested only on animals before being
    applied to Brazilians.
- source_sentence: Imagina que naciste en Una familia pobre. C HONDURAS
  sentences:
  - Doria's guinea pig who took the Chinese vaccine against the new coronavirus.
  - This is a promo for a new Netflix series "Narcos Honduras"
  - Demônio subindo no teto de igreja na Itália ou Espanha
- source_sentence: So Let's - Circle Back - to how YOU got your JOB - Jen Psaki
  sentences:
  - Jokowi Demonstrated in Germany
  - NAIA reverts to MIA, its old name
  - Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’
model-index:
- name: Multilingual mPNet finetuned for cross-lingual similarity
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: eval similarity
      type: eval-similarity
    metrics:
    - type: pearson_cosine
      value: 0.9494257373936542
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8549322905323449
      name: Spearman Cosine
---

# Multilingual mPNet finetuned for cross-lingual similarity

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Languages:** en, ar, pt, es, de, th
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("aryasuneesh/paraphrase-multilingual-mpnet-base-v2-7")
# Run inference
sentences = [
    "So Let's - Circle Back - to how YOU got your JOB - Jen Psaki",
    "Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’",
    'NAIA reverts to MIA, its old name',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Dataset: `eval-similarity`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9494     |
| **spearman_cosine** | **0.8549** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 178,008 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                              | text2                                                                              | label                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 65.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                                                                                                              | text2                                                                                          | label            |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------|
  | <code>CONFIRM THAT THE UNITED STATES CARRIED CARRIED OUT A MILITARY ATTACK ON KABUL</code>                                                                         | <code>صورة لانفجار عبوة ناسفة استهدفت سيارة عسكرية جنوب غربي مدينة الرقة السوريّة.</code>      | <code>0.0</code> |
  | <code>Lisboa grita Fora Bolsonaro durante show de Gustavo Lima De arrepiarl [USER] LISBOA, PORTUGAL</code>                                                         | <code>Lisbon screams Fora Bolsonaro during concert by Gustavo Lima</code>                      | <code>0.0</code> |
  | <code>Singapore stops the vaccination after 48 people died The Telegraph Singapore halts use of flu vaccines after 48 die in South Korea [USER].06flatearth</code> | <code>Singapore halts the rollout of influenza vaccination due to deaths in South Korea</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 44,503 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                              | text2                                                                              | label                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 7 tokens</li><li>mean: 66.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.01 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | text2                                                                                                                | label            |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>141 UN PUEBLO QUE ELIGE A CORRUPTOS, LADRONES Y TRAIDORES NO ES VÍCTIMA, ES COMPLICE. GEORGE ORWELL or [USER] periodismo • poder para la gente</code>                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>“A people who elect corrupts, imposters, thieves and traitors, are not victims. You are an accomplice!”</code> | <code>0.0</code> |
  | <code>Watch Full Video [URL] Nasir Chenyoti, the one who spread smiles on people's faces, is fighting a life and death battle today.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>Pakistani comic Nasir Chinyoti burned in an accident</code>                                                    | <code>1.0</code> |
  | <code>at des Bezirkec Potsdam Abt. Veterinarsenen 1500 Heinrich-enn-Allee 107 III-15-01-Br 25. Juli 1985 04.07.1985 Information zum Infektionszeitpunkt und zur Übertragung der Coronavirueinfektion in Krein Brandenburg Ier 03.07.1985 gibt es in Kreis 7 staatliche ban. genossenschaftliche und 24 individuelle Coronavirus infektions-Bestunde (siehe Anlage). - Fia Fratinfektion hat vermutlich in der FA wollin stattgefunden (Blutentnahme v. 22.5.85, Feststellung 30.5.85). Von Galten der Betriebsleitung wird eine Einschleppung tiber 1KVE-Fahrzeuge der TVB Conthin vermutet.</code> | <code>Dieses Dokument beweist, dass das Corona-Virus schon in der DDR existierte</code>                              | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `fp16_full_eval`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: True
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step      | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
|:----------:|:---------:|:-------------:|:---------------:|:-------------------------------:|
| 0.1247     | 347       | 0.1578        | -               | -                               |
| 0.2495     | 694       | 0.1356        | -               | -                               |
| 0.2498     | 695       | -             | 0.1248          | 0.7041                          |
| 0.3742     | 1041      | 0.1206        | -               | -                               |
| 0.4989     | 1388      | 0.1121        | -               | -                               |
| 0.4996     | 1390      | -             | 0.1026          | 0.7569                          |
| 0.6237     | 1735      | 0.1028        | -               | -                               |
| 0.7484     | 2082      | 0.093         | -               | -                               |
| 0.7495     | 2085      | -             | 0.0862          | 0.7896                          |
| 0.8731     | 2429      | 0.0889        | -               | -                               |
| 0.9978     | 2776      | 0.083         | -               | -                               |
| 0.9993     | 2780      | -             | 0.0739          | 0.8097                          |
| 1.1226     | 3123      | 0.0648        | -               | -                               |
| 1.2473     | 3470      | 0.062         | -               | -                               |
| 1.2491     | 3475      | -             | 0.0662          | 0.8174                          |
| 1.3720     | 3817      | 0.0595        | -               | -                               |
| 1.4968     | 4164      | 0.0567        | -               | -                               |
| 1.4989     | 4170      | -             | 0.0585          | 0.8277                          |
| 1.6215     | 4511      | 0.0553        | -               | -                               |
| 1.7462     | 4858      | 0.0513        | -               | -                               |
| 1.7487     | 4865      | -             | 0.0518          | 0.8355                          |
| 1.8710     | 5205      | 0.0497        | -               | -                               |
| 1.9957     | 5552      | 0.0465        | -               | -                               |
| 1.9986     | 5560      | -             | 0.0462          | 0.8409                          |
| 2.1204     | 5899      | 0.0336        | -               | -                               |
| 2.2451     | 6246      | 0.0319        | -               | -                               |
| 2.2484     | 6255      | -             | 0.0433          | 0.8438                          |
| 2.3699     | 6593      | 0.0311        | -               | -                               |
| 2.4946     | 6940      | 0.0304        | -               | -                               |
| 2.4982     | 6950      | -             | 0.0401          | 0.8457                          |
| 2.6193     | 7287      | 0.0306        | -               | -                               |
| 2.7441     | 7634      | 0.0302        | -               | -                               |
| 2.7480     | 7645      | -             | 0.0356          | 0.8492                          |
| 2.8688     | 7981      | 0.0275        | -               | -                               |
| 2.9935     | 8328      | 0.0281        | -               | -                               |
| 2.9978     | 8340      | -             | 0.0330          | 0.8509                          |
| 3.1183     | 8675      | 0.0198        | -               | -                               |
| 3.2430     | 9022      | 0.0198        | -               | -                               |
| 3.2477     | 9035      | -             | 0.0315          | 0.8520                          |
| 3.3677     | 9369      | 0.0183        | -               | -                               |
| 3.4925     | 9716      | 0.0182        | -               | -                               |
| 3.4975     | 9730      | -             | 0.0303          | 0.8526                          |
| 3.6172     | 10063     | 0.0189        | -               | -                               |
| 3.7419     | 10410     | 0.018         | -               | -                               |
| 3.7473     | 10425     | -             | 0.0289          | 0.8539                          |
| 3.8666     | 10757     | 0.0171        | -               | -                               |
| 3.9914     | 11104     | 0.0178        | -               | -                               |
| 3.9971     | 11120     | -             | 0.0274          | 0.8546                          |
| 4.1161     | 11451     | 0.014         | -               | -                               |
| 4.2408     | 11798     | 0.0142        | -               | -                               |
| 4.2469     | 11815     | -             | 0.0269          | 0.8547                          |
| 4.3656     | 12145     | 0.0137        | -               | -                               |
| 4.4903     | 12492     | 0.0135        | -               | -                               |
| 4.4968     | 12510     | -             | 0.0266          | 0.8548                          |
| 4.6150     | 12839     | 0.0136        | -               | -                               |
| 4.7398     | 13186     | 0.0138        | -               | -                               |
| 4.7466     | 13205     | -             | 0.0265          | 0.8549                          |
| 4.8645     | 13533     | 0.0135        | -               | -                               |
| 4.9892     | 13880     | 0.0136        | -               | -                               |
| **4.9964** | **13900** | **-**         | **0.0265**      | **0.8549**                      |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->