File size: 26,279 Bytes
ac3ec7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
---
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
language:
- en
- ar
- pt
- es
- de
- th
library_name: sentence-transformers
license: apache-2.0
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:178008
- loss:CosineSimilarityLoss
widget:
- source_sentence: 'PHOTOS: Giant human skeleton found in cave by Khao Khanap Nam
A unique discovery of the giant skeleton. Giant possibly killed by a snake. Important
discovery made by paleontologists. Group of scientists unearthing remains of a
human skeleton of gigantic proportions. Do we finally have irrefutable proof that
human giants existed?'
sentences:
- The skeleton that appears in the photographs belongs to a giant human. It is an
important discovery made by paleontologists.
- تم بعون الله شراء خصله شعر رسول الله واودعت اخيرا في دبي بعد شراءها من متحف قرطبة
بأسبانيا صلو على رسول الله
- Photo shows a 2015 visit by then-US president Barack Obama, infectious diseases
expert Dr. Anthony Fauci and philanthropist Melinda Gates to a laboratory in China’s
Wuhan
- source_sentence: iris o preventable ALL OR PATRIC emergency operations center medical
PH manual wennilindered J -Phansuk c
sentences:
- Bolivianos cruzan frontera para votar en legislativas nacionales argentinas
- Note that the pH of the coronavirus ranges from 5.5 to 8.5. So, all we have to
do, to eliminate the virus, is consume more alkaline foods, above the acid level
of the virus. Such as; Bananas, Lime → 9.9 pH, Yellow Lemon → 8.2 pH, Avocado
- 15.6 pH, Garlic - 13.2 pH, Mango - 8.7 pH, Tangerine - 8.5 pH, Pineapple - 12.7
pH, Watercress - 22.7 pH, oranges - 9.2 pH
- El aseo bucal extremo cura y previene el covid-19
- source_sentence: 'ACCORDING TO THE PENDLES 4/22/240 FROM TV AND POLLERS -CASTLE
- KEY KO - FAILED - DOES NOT KNOW THE 4.1% 26% fifteen%. 18% HANDLING CASTLE:
41%. KEYKO: 26 + 15 +18 = 59% AST MANIPULATE AND PREPARE THE FRAUD AND THE DECEIT.'
sentences:
- A Spanish scientist declares that soccer players like Messi and Ronaldo earn 1
million euros per month and researchers who fight against COVID-19 1,800 euros
per month
- White and flawed votes join Keiko Fujimori in the survey
- The Oxford and Sinovac Biotech vaccines were tested only on animals before being
applied to Brazilians.
- source_sentence: Imagina que naciste en Una familia pobre. C HONDURAS
sentences:
- Doria's guinea pig who took the Chinese vaccine against the new coronavirus.
- This is a promo for a new Netflix series "Narcos Honduras"
- Demônio subindo no teto de igreja na Itália ou Espanha
- source_sentence: So Let's - Circle Back - to how YOU got your JOB - Jen Psaki
sentences:
- Jokowi Demonstrated in Germany
- NAIA reverts to MIA, its old name
- Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’
model-index:
- name: Multilingual mPNet finetuned for cross-lingual similarity
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval similarity
type: eval-similarity
metrics:
- type: pearson_cosine
value: 0.9494257373936542
name: Pearson Cosine
- type: spearman_cosine
value: 0.8549322905323449
name: Spearman Cosine
---
# Multilingual mPNet finetuned for cross-lingual similarity
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Languages:** en, ar, pt, es, de, th
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("aryasuneesh/paraphrase-multilingual-mpnet-base-v2-7")
# Run inference
sentences = [
"So Let's - Circle Back - to how YOU got your JOB - Jen Psaki",
"Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’",
'NAIA reverts to MIA, its old name',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `eval-similarity`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9494 |
| **spearman_cosine** | **0.8549** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 178,008 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 65.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
* Samples:
| text1 | text2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------|
| <code>CONFIRM THAT THE UNITED STATES CARRIED CARRIED OUT A MILITARY ATTACK ON KABUL</code> | <code>صورة لانفجار عبوة ناسفة استهدفت سيارة عسكرية جنوب غربي مدينة الرقة السوريّة.</code> | <code>0.0</code> |
| <code>Lisboa grita Fora Bolsonaro durante show de Gustavo Lima De arrepiarl [USER] LISBOA, PORTUGAL</code> | <code>Lisbon screams Fora Bolsonaro during concert by Gustavo Lima</code> | <code>0.0</code> |
| <code>Singapore stops the vaccination after 48 people died The Telegraph Singapore halts use of flu vaccines after 48 die in South Korea [USER].06flatearth</code> | <code>Singapore halts the rollout of influenza vaccination due to deaths in South Korea</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 44,503 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 66.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.01 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
* Samples:
| text1 | text2 | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>141 UN PUEBLO QUE ELIGE A CORRUPTOS, LADRONES Y TRAIDORES NO ES VÍCTIMA, ES COMPLICE. GEORGE ORWELL or [USER] periodismo • poder para la gente</code> | <code>“A people who elect corrupts, imposters, thieves and traitors, are not victims. You are an accomplice!”</code> | <code>0.0</code> |
| <code>Watch Full Video [URL] Nasir Chenyoti, the one who spread smiles on people's faces, is fighting a life and death battle today.</code> | <code>Pakistani comic Nasir Chinyoti burned in an accident</code> | <code>1.0</code> |
| <code>at des Bezirkec Potsdam Abt. Veterinarsenen 1500 Heinrich-enn-Allee 107 III-15-01-Br 25. Juli 1985 04.07.1985 Information zum Infektionszeitpunkt und zur Übertragung der Coronavirueinfektion in Krein Brandenburg Ier 03.07.1985 gibt es in Kreis 7 staatliche ban. genossenschaftliche und 24 individuelle Coronavirus infektions-Bestunde (siehe Anlage). - Fia Fratinfektion hat vermutlich in der FA wollin stattgefunden (Blutentnahme v. 22.5.85, Feststellung 30.5.85). Von Galten der Betriebsleitung wird eine Einschleppung tiber 1KVE-Fahrzeuge der TVB Conthin vermutet.</code> | <code>Dieses Dokument beweist, dass das Corona-Virus schon in der DDR existierte</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `fp16_full_eval`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: True
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
|:----------:|:---------:|:-------------:|:---------------:|:-------------------------------:|
| 0.1247 | 347 | 0.1578 | - | - |
| 0.2495 | 694 | 0.1356 | - | - |
| 0.2498 | 695 | - | 0.1248 | 0.7041 |
| 0.3742 | 1041 | 0.1206 | - | - |
| 0.4989 | 1388 | 0.1121 | - | - |
| 0.4996 | 1390 | - | 0.1026 | 0.7569 |
| 0.6237 | 1735 | 0.1028 | - | - |
| 0.7484 | 2082 | 0.093 | - | - |
| 0.7495 | 2085 | - | 0.0862 | 0.7896 |
| 0.8731 | 2429 | 0.0889 | - | - |
| 0.9978 | 2776 | 0.083 | - | - |
| 0.9993 | 2780 | - | 0.0739 | 0.8097 |
| 1.1226 | 3123 | 0.0648 | - | - |
| 1.2473 | 3470 | 0.062 | - | - |
| 1.2491 | 3475 | - | 0.0662 | 0.8174 |
| 1.3720 | 3817 | 0.0595 | - | - |
| 1.4968 | 4164 | 0.0567 | - | - |
| 1.4989 | 4170 | - | 0.0585 | 0.8277 |
| 1.6215 | 4511 | 0.0553 | - | - |
| 1.7462 | 4858 | 0.0513 | - | - |
| 1.7487 | 4865 | - | 0.0518 | 0.8355 |
| 1.8710 | 5205 | 0.0497 | - | - |
| 1.9957 | 5552 | 0.0465 | - | - |
| 1.9986 | 5560 | - | 0.0462 | 0.8409 |
| 2.1204 | 5899 | 0.0336 | - | - |
| 2.2451 | 6246 | 0.0319 | - | - |
| 2.2484 | 6255 | - | 0.0433 | 0.8438 |
| 2.3699 | 6593 | 0.0311 | - | - |
| 2.4946 | 6940 | 0.0304 | - | - |
| 2.4982 | 6950 | - | 0.0401 | 0.8457 |
| 2.6193 | 7287 | 0.0306 | - | - |
| 2.7441 | 7634 | 0.0302 | - | - |
| 2.7480 | 7645 | - | 0.0356 | 0.8492 |
| 2.8688 | 7981 | 0.0275 | - | - |
| 2.9935 | 8328 | 0.0281 | - | - |
| 2.9978 | 8340 | - | 0.0330 | 0.8509 |
| 3.1183 | 8675 | 0.0198 | - | - |
| 3.2430 | 9022 | 0.0198 | - | - |
| 3.2477 | 9035 | - | 0.0315 | 0.8520 |
| 3.3677 | 9369 | 0.0183 | - | - |
| 3.4925 | 9716 | 0.0182 | - | - |
| 3.4975 | 9730 | - | 0.0303 | 0.8526 |
| 3.6172 | 10063 | 0.0189 | - | - |
| 3.7419 | 10410 | 0.018 | - | - |
| 3.7473 | 10425 | - | 0.0289 | 0.8539 |
| 3.8666 | 10757 | 0.0171 | - | - |
| 3.9914 | 11104 | 0.0178 | - | - |
| 3.9971 | 11120 | - | 0.0274 | 0.8546 |
| 4.1161 | 11451 | 0.014 | - | - |
| 4.2408 | 11798 | 0.0142 | - | - |
| 4.2469 | 11815 | - | 0.0269 | 0.8547 |
| 4.3656 | 12145 | 0.0137 | - | - |
| 4.4903 | 12492 | 0.0135 | - | - |
| 4.4968 | 12510 | - | 0.0266 | 0.8548 |
| 4.6150 | 12839 | 0.0136 | - | - |
| 4.7398 | 13186 | 0.0138 | - | - |
| 4.7466 | 13205 | - | 0.0265 | 0.8549 |
| 4.8645 | 13533 | 0.0135 | - | - |
| 4.9892 | 13880 | 0.0136 | - | - |
| **4.9964** | **13900** | **-** | **0.0265** | **0.8549** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |