mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1

This model is a fine-tuned version of asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5335
  • F1 Macro: 0.8675
  • F1 Micro: 0.8692
  • Accuracy Balanced: 0.8674
  • Accuracy: 0.8692
  • Precision Macro: 0.8677
  • Recall Macro: 0.8674
  • Precision Micro: 0.8692
  • Recall Micro: 0.8692

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.1975 0.17 200 0.3474 0.8688 0.8708 0.8678 0.8708 0.8701 0.8678 0.8708 0.8708
0.1974 0.34 400 0.3580 0.8600 0.8624 0.8585 0.8624 0.8621 0.8585 0.8624 0.8624
0.2054 0.51 600 0.3616 0.8520 0.8565 0.8476 0.8565 0.8638 0.8476 0.8565 0.8565
0.2094 0.68 800 0.3772 0.8658 0.8687 0.8630 0.8687 0.8710 0.8630 0.8687 0.8687
0.2118 0.85 1000 0.3701 0.8729 0.8740 0.8747 0.8740 0.8719 0.8747 0.8740 0.8740
0.1948 1.02 1200 0.3778 0.8698 0.8714 0.8702 0.8714 0.8696 0.8702 0.8714 0.8714
0.1447 1.19 1400 0.3964 0.8666 0.8692 0.8642 0.8692 0.8706 0.8642 0.8692 0.8692
0.1723 1.35 1600 0.3855 0.8718 0.8735 0.8716 0.8735 0.8720 0.8716 0.8735 0.8735
0.1476 1.52 1800 0.4164 0.8637 0.8661 0.8620 0.8661 0.8661 0.8620 0.8661 0.8661
0.1515 1.69 2000 0.3958 0.8724 0.8740 0.8725 0.8740 0.8724 0.8725 0.8740 0.8740
0.1378 1.86 2200 0.4390 0.8694 0.8708 0.8699 0.8708 0.8689 0.8699 0.8708 0.8708
0.1332 2.03 2400 0.4535 0.8732 0.8745 0.8740 0.8745 0.8726 0.8740 0.8745 0.8745
0.0913 2.2 2600 0.5235 0.8638 0.8661 0.8625 0.8661 0.8656 0.8625 0.8661 0.8661
0.1076 2.37 2800 0.5339 0.8638 0.8661 0.8623 0.8661 0.8659 0.8623 0.8661 0.8661
0.09 2.54 3000 0.5388 0.8670 0.8687 0.8667 0.8687 0.8672 0.8667 0.8687 0.8687
0.0928 2.71 3200 0.5266 0.8649 0.8666 0.8648 0.8666 0.8650 0.8648 0.8666 0.8666
0.0805 2.88 3400 0.5433 0.8658 0.8677 0.8654 0.8677 0.8663 0.8654 0.8677 0.8677

Eval results

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.576 0.165 0.584 0.523
eval_f1_macro 0.869 0.945 0.868 0.878
eval_f1_micro 0.87 0.945 0.87 0.879
eval_accuracy_balanced 0.868 0.945 0.867 0.878
eval_accuracy 0.87 0.945 0.87 0.879
eval_precision_macro 0.87 0.945 0.868 0.88
eval_recall_macro 0.868 0.945 0.867 0.878
eval_precision_micro 0.87 0.945 0.87 0.879
eval_recall_micro 0.87 0.945 0.87 0.879
eval_runtime 229.83 4.05 51.2 203.627
eval_samples_per_second 36.984 233.57 36.894 37.112
eval_steps_per_second 0.292 1.975 0.293 0.295
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
39
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1

Datasets used to train asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1