mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1
This model is a fine-tuned version of asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5335
- F1 Macro: 0.8675
- F1 Micro: 0.8692
- Accuracy Balanced: 0.8674
- Accuracy: 0.8692
- Precision Macro: 0.8677
- Recall Macro: 0.8674
- Precision Micro: 0.8692
- Recall Micro: 0.8692
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1975 | 0.17 | 200 | 0.3474 | 0.8688 | 0.8708 | 0.8678 | 0.8708 | 0.8701 | 0.8678 | 0.8708 | 0.8708 |
0.1974 | 0.34 | 400 | 0.3580 | 0.8600 | 0.8624 | 0.8585 | 0.8624 | 0.8621 | 0.8585 | 0.8624 | 0.8624 |
0.2054 | 0.51 | 600 | 0.3616 | 0.8520 | 0.8565 | 0.8476 | 0.8565 | 0.8638 | 0.8476 | 0.8565 | 0.8565 |
0.2094 | 0.68 | 800 | 0.3772 | 0.8658 | 0.8687 | 0.8630 | 0.8687 | 0.8710 | 0.8630 | 0.8687 | 0.8687 |
0.2118 | 0.85 | 1000 | 0.3701 | 0.8729 | 0.8740 | 0.8747 | 0.8740 | 0.8719 | 0.8747 | 0.8740 | 0.8740 |
0.1948 | 1.02 | 1200 | 0.3778 | 0.8698 | 0.8714 | 0.8702 | 0.8714 | 0.8696 | 0.8702 | 0.8714 | 0.8714 |
0.1447 | 1.19 | 1400 | 0.3964 | 0.8666 | 0.8692 | 0.8642 | 0.8692 | 0.8706 | 0.8642 | 0.8692 | 0.8692 |
0.1723 | 1.35 | 1600 | 0.3855 | 0.8718 | 0.8735 | 0.8716 | 0.8735 | 0.8720 | 0.8716 | 0.8735 | 0.8735 |
0.1476 | 1.52 | 1800 | 0.4164 | 0.8637 | 0.8661 | 0.8620 | 0.8661 | 0.8661 | 0.8620 | 0.8661 | 0.8661 |
0.1515 | 1.69 | 2000 | 0.3958 | 0.8724 | 0.8740 | 0.8725 | 0.8740 | 0.8724 | 0.8725 | 0.8740 | 0.8740 |
0.1378 | 1.86 | 2200 | 0.4390 | 0.8694 | 0.8708 | 0.8699 | 0.8708 | 0.8689 | 0.8699 | 0.8708 | 0.8708 |
0.1332 | 2.03 | 2400 | 0.4535 | 0.8732 | 0.8745 | 0.8740 | 0.8745 | 0.8726 | 0.8740 | 0.8745 | 0.8745 |
0.0913 | 2.2 | 2600 | 0.5235 | 0.8638 | 0.8661 | 0.8625 | 0.8661 | 0.8656 | 0.8625 | 0.8661 | 0.8661 |
0.1076 | 2.37 | 2800 | 0.5339 | 0.8638 | 0.8661 | 0.8623 | 0.8661 | 0.8659 | 0.8623 | 0.8661 | 0.8661 |
0.09 | 2.54 | 3000 | 0.5388 | 0.8670 | 0.8687 | 0.8667 | 0.8687 | 0.8672 | 0.8667 | 0.8687 | 0.8687 |
0.0928 | 2.71 | 3200 | 0.5266 | 0.8649 | 0.8666 | 0.8648 | 0.8666 | 0.8650 | 0.8648 | 0.8666 | 0.8666 |
0.0805 | 2.88 | 3400 | 0.5433 | 0.8658 | 0.8677 | 0.8654 | 0.8677 | 0.8663 | 0.8654 | 0.8677 | 0.8677 |
Eval results
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test | eval_dataset | test_dataset |
---|---|---|---|---|
eval_loss | 0.576 | 0.165 | 0.584 | 0.523 |
eval_f1_macro | 0.869 | 0.945 | 0.868 | 0.878 |
eval_f1_micro | 0.87 | 0.945 | 0.87 | 0.879 |
eval_accuracy_balanced | 0.868 | 0.945 | 0.867 | 0.878 |
eval_accuracy | 0.87 | 0.945 | 0.87 | 0.879 |
eval_precision_macro | 0.87 | 0.945 | 0.868 | 0.88 |
eval_recall_macro | 0.868 | 0.945 | 0.867 | 0.878 |
eval_precision_micro | 0.87 | 0.945 | 0.87 | 0.879 |
eval_recall_micro | 0.87 | 0.945 | 0.87 | 0.879 |
eval_runtime | 229.83 | 4.05 | 51.2 | 203.627 |
eval_samples_per_second | 36.984 | 233.57 | 36.894 | 37.112 |
eval_steps_per_second | 0.292 | 1.975 | 0.293 | 0.295 |
Size of dataset | 8500 | 946 | 1889 | 7557 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3
- Downloads last month
- 39
Unable to determine this model's library. Check the
docs
.