asadfgglie
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,85 +1,90 @@
|
|
1 |
-
---
|
2 |
-
base_model: asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
-
metrics:
|
6 |
-
- accuracy
|
7 |
-
model-index:
|
8 |
-
- name: mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1
|
9 |
-
results: []
|
10 |
-
---
|
11 |
-
|
12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
-
|
15 |
-
# mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1
|
16 |
-
|
17 |
-
This model is a fine-tuned version of [asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0](https://huggingface.co/asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0) on the None dataset.
|
18 |
-
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.5335
|
20 |
-
- F1 Macro: 0.8675
|
21 |
-
- F1 Micro: 0.8692
|
22 |
-
- Accuracy Balanced: 0.8674
|
23 |
-
- Accuracy: 0.8692
|
24 |
-
- Precision Macro: 0.8677
|
25 |
-
- Recall Macro: 0.8674
|
26 |
-
- Precision Micro: 0.8692
|
27 |
-
- Recall Micro: 0.8692
|
28 |
-
|
29 |
-
## Model description
|
30 |
-
|
31 |
-
More information needed
|
32 |
-
|
33 |
-
## Intended uses & limitations
|
34 |
-
|
35 |
-
More information needed
|
36 |
-
|
37 |
-
## Training and evaluation data
|
38 |
-
|
39 |
-
More information needed
|
40 |
-
|
41 |
-
## Training procedure
|
42 |
-
|
43 |
-
### Training hyperparameters
|
44 |
-
|
45 |
-
The following hyperparameters were used during training:
|
46 |
-
- learning_rate: 2e-05
|
47 |
-
- train_batch_size: 16
|
48 |
-
- eval_batch_size: 128
|
49 |
-
- seed: 42
|
50 |
-
- gradient_accumulation_steps: 2
|
51 |
-
- total_train_batch_size: 32
|
52 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
-
- lr_scheduler_type: linear
|
54 |
-
- lr_scheduler_warmup_ratio: 0.06
|
55 |
-
- num_epochs: 3
|
56 |
-
|
57 |
-
### Training results
|
58 |
-
|
59 |
-
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
60 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
61 |
-
| 0.1975 | 0.17 | 200 | 0.3474 | 0.8688 | 0.8708 | 0.8678 | 0.8708 | 0.8701 | 0.8678 | 0.8708 | 0.8708 |
|
62 |
-
| 0.1974 | 0.34 | 400 | 0.3580 | 0.8600 | 0.8624 | 0.8585 | 0.8624 | 0.8621 | 0.8585 | 0.8624 | 0.8624 |
|
63 |
-
| 0.2054 | 0.51 | 600 | 0.3616 | 0.8520 | 0.8565 | 0.8476 | 0.8565 | 0.8638 | 0.8476 | 0.8565 | 0.8565 |
|
64 |
-
| 0.2094 | 0.68 | 800 | 0.3772 | 0.8658 | 0.8687 | 0.8630 | 0.8687 | 0.8710 | 0.8630 | 0.8687 | 0.8687 |
|
65 |
-
| 0.2118 | 0.85 | 1000 | 0.3701 | 0.8729 | 0.8740 | 0.8747 | 0.8740 | 0.8719 | 0.8747 | 0.8740 | 0.8740 |
|
66 |
-
| 0.1948 | 1.02 | 1200 | 0.3778 | 0.8698 | 0.8714 | 0.8702 | 0.8714 | 0.8696 | 0.8702 | 0.8714 | 0.8714 |
|
67 |
-
| 0.1447 | 1.19 | 1400 | 0.3964 | 0.8666 | 0.8692 | 0.8642 | 0.8692 | 0.8706 | 0.8642 | 0.8692 | 0.8692 |
|
68 |
-
| 0.1723 | 1.35 | 1600 | 0.3855 | 0.8718 | 0.8735 | 0.8716 | 0.8735 | 0.8720 | 0.8716 | 0.8735 | 0.8735 |
|
69 |
-
| 0.1476 | 1.52 | 1800 | 0.4164 | 0.8637 | 0.8661 | 0.8620 | 0.8661 | 0.8661 | 0.8620 | 0.8661 | 0.8661 |
|
70 |
-
| 0.1515 | 1.69 | 2000 | 0.3958 | 0.8724 | 0.8740 | 0.8725 | 0.8740 | 0.8724 | 0.8725 | 0.8740 | 0.8740 |
|
71 |
-
| 0.1378 | 1.86 | 2200 | 0.4390 | 0.8694 | 0.8708 | 0.8699 | 0.8708 | 0.8689 | 0.8699 | 0.8708 | 0.8708 |
|
72 |
-
| 0.1332 | 2.03 | 2400 | 0.4535 | 0.8732 | 0.8745 | 0.8740 | 0.8745 | 0.8726 | 0.8740 | 0.8745 | 0.8745 |
|
73 |
-
| 0.0913 | 2.2 | 2600 | 0.5235 | 0.8638 | 0.8661 | 0.8625 | 0.8661 | 0.8656 | 0.8625 | 0.8661 | 0.8661 |
|
74 |
-
| 0.1076 | 2.37 | 2800 | 0.5339 | 0.8638 | 0.8661 | 0.8623 | 0.8661 | 0.8659 | 0.8623 | 0.8661 | 0.8661 |
|
75 |
-
| 0.09 | 2.54 | 3000 | 0.5388 | 0.8670 | 0.8687 | 0.8667 | 0.8687 | 0.8672 | 0.8667 | 0.8687 | 0.8687 |
|
76 |
-
| 0.0928 | 2.71 | 3200 | 0.5266 | 0.8649 | 0.8666 | 0.8648 | 0.8666 | 0.8650 | 0.8648 | 0.8666 | 0.8666 |
|
77 |
-
| 0.0805 | 2.88 | 3400 | 0.5433 | 0.8658 | 0.8677 | 0.8654 | 0.8677 | 0.8663 | 0.8654 | 0.8677 | 0.8677 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.1
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0](https://huggingface.co/asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5335
|
20 |
+
- F1 Macro: 0.8675
|
21 |
+
- F1 Micro: 0.8692
|
22 |
+
- Accuracy Balanced: 0.8674
|
23 |
+
- Accuracy: 0.8692
|
24 |
+
- Precision Macro: 0.8677
|
25 |
+
- Recall Macro: 0.8674
|
26 |
+
- Precision Micro: 0.8692
|
27 |
+
- Recall Micro: 0.8692
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 128
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 2
|
51 |
+
- total_train_batch_size: 32
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_ratio: 0.06
|
55 |
+
- num_epochs: 3
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
61 |
+
| 0.1975 | 0.17 | 200 | 0.3474 | 0.8688 | 0.8708 | 0.8678 | 0.8708 | 0.8701 | 0.8678 | 0.8708 | 0.8708 |
|
62 |
+
| 0.1974 | 0.34 | 400 | 0.3580 | 0.8600 | 0.8624 | 0.8585 | 0.8624 | 0.8621 | 0.8585 | 0.8624 | 0.8624 |
|
63 |
+
| 0.2054 | 0.51 | 600 | 0.3616 | 0.8520 | 0.8565 | 0.8476 | 0.8565 | 0.8638 | 0.8476 | 0.8565 | 0.8565 |
|
64 |
+
| 0.2094 | 0.68 | 800 | 0.3772 | 0.8658 | 0.8687 | 0.8630 | 0.8687 | 0.8710 | 0.8630 | 0.8687 | 0.8687 |
|
65 |
+
| 0.2118 | 0.85 | 1000 | 0.3701 | 0.8729 | 0.8740 | 0.8747 | 0.8740 | 0.8719 | 0.8747 | 0.8740 | 0.8740 |
|
66 |
+
| 0.1948 | 1.02 | 1200 | 0.3778 | 0.8698 | 0.8714 | 0.8702 | 0.8714 | 0.8696 | 0.8702 | 0.8714 | 0.8714 |
|
67 |
+
| 0.1447 | 1.19 | 1400 | 0.3964 | 0.8666 | 0.8692 | 0.8642 | 0.8692 | 0.8706 | 0.8642 | 0.8692 | 0.8692 |
|
68 |
+
| 0.1723 | 1.35 | 1600 | 0.3855 | 0.8718 | 0.8735 | 0.8716 | 0.8735 | 0.8720 | 0.8716 | 0.8735 | 0.8735 |
|
69 |
+
| 0.1476 | 1.52 | 1800 | 0.4164 | 0.8637 | 0.8661 | 0.8620 | 0.8661 | 0.8661 | 0.8620 | 0.8661 | 0.8661 |
|
70 |
+
| 0.1515 | 1.69 | 2000 | 0.3958 | 0.8724 | 0.8740 | 0.8725 | 0.8740 | 0.8724 | 0.8725 | 0.8740 | 0.8740 |
|
71 |
+
| 0.1378 | 1.86 | 2200 | 0.4390 | 0.8694 | 0.8708 | 0.8699 | 0.8708 | 0.8689 | 0.8699 | 0.8708 | 0.8708 |
|
72 |
+
| 0.1332 | 2.03 | 2400 | 0.4535 | 0.8732 | 0.8745 | 0.8740 | 0.8745 | 0.8726 | 0.8740 | 0.8745 | 0.8745 |
|
73 |
+
| 0.0913 | 2.2 | 2600 | 0.5235 | 0.8638 | 0.8661 | 0.8625 | 0.8661 | 0.8656 | 0.8625 | 0.8661 | 0.8661 |
|
74 |
+
| 0.1076 | 2.37 | 2800 | 0.5339 | 0.8638 | 0.8661 | 0.8623 | 0.8661 | 0.8659 | 0.8623 | 0.8661 | 0.8661 |
|
75 |
+
| 0.09 | 2.54 | 3000 | 0.5388 | 0.8670 | 0.8687 | 0.8667 | 0.8687 | 0.8672 | 0.8667 | 0.8687 | 0.8687 |
|
76 |
+
| 0.0928 | 2.71 | 3200 | 0.5266 | 0.8649 | 0.8666 | 0.8648 | 0.8666 | 0.8650 | 0.8648 | 0.8666 | 0.8666 |
|
77 |
+
| 0.0805 | 2.88 | 3400 | 0.5433 | 0.8658 | 0.8677 | 0.8654 | 0.8677 | 0.8663 | 0.8654 | 0.8677 | 0.8677 |
|
78 |
+
|
79 |
+
### Eval results
|
80 |
+
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli|eval_dataset|
|
81 |
+
| :---: | :---: | :---: | :---: |
|
82 |
+
|Accuracy|0.87|0.955|0.869|
|
83 |
+
|Inference text/sec (RTX4060ti, batch=128)|36.0|256.0|32.0|
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.33.3
|
88 |
+
- Pytorch 2.5.1+cu121
|
89 |
+
- Datasets 2.14.7
|
90 |
+
- Tokenizers 0.13.3
|