metadata
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
results: []
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2718
- F1 Macro: 0.9088
- F1 Micro: 0.9089
- Accuracy Balanced: 0.9089
- Accuracy: 0.9089
- Precision Macro: 0.9092
- Recall Macro: 0.9089
- Precision Micro: 0.9089
- Recall Micro: 0.9089
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 20241201
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2798 | 1.69 | 200 | 0.3328 | 0.8677 | 0.8677 | 0.8681 | 0.8677 | 0.8678 | 0.8681 | 0.8677 | 0.8677 |
Eval results
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test | eval_dataset | test_dataset |
---|---|---|---|---|
eval_loss | 0.667 | 0.294 | 0.381 | 0.272 |
eval_f1_macro | 0.711 | 0.901 | 0.868 | 0.909 |
eval_f1_micro | 0.713 | 0.901 | 0.868 | 0.909 |
eval_accuracy_balanced | 0.71 | 0.901 | 0.867 | 0.909 |
eval_accuracy | 0.713 | 0.901 | 0.868 | 0.909 |
eval_precision_macro | 0.711 | 0.901 | 0.868 | 0.909 |
eval_recall_macro | 0.71 | 0.901 | 0.867 | 0.909 |
eval_precision_micro | 0.713 | 0.901 | 0.868 | 0.909 |
eval_recall_micro | 0.713 | 0.901 | 0.868 | 0.909 |
eval_runtime | 568.387 | 4.571 | 0.829 | 3.382 |
eval_samples_per_second | 14.955 | 206.945 | 227.909 | 223.805 |
eval_steps_per_second | 0.118 | 1.75 | 2.412 | 1.774 |
epoch | 2.99 | 2.99 | 2.99 | 2.99 |
Size of dataset | 8500 | 946 | 189 | 757 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3