asadfgglie's picture
Update README.md
27c8097 verified
---
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
results: []
datasets:
- asadfgglie/BanBan_2024-10-17-facial_expressions-nli
language:
- zh
pipeline_tag: zero-shot-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mDeBERTa-v3-base-xnli-multilingual-zeroshot-v3.0-only-non-nli
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2718
- F1 Macro: 0.9088
- F1 Micro: 0.9089
- Accuracy Balanced: 0.9089
- Accuracy: 0.9089
- Precision Macro: 0.9092
- Recall Macro: 0.9089
- Precision Micro: 0.9089
- Recall Micro: 0.9089
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 20241201
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
| 0.2798 | 1.69 | 200 | 0.3328 | 0.8677 | 0.8677 | 0.8681 | 0.8677 | 0.8678 | 0.8681 | 0.8677 | 0.8677 |
### Eval results
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset|
| :---: | :---: | :---: | :---: | :---: |
|eval_loss|0.667|0.294|0.381|0.272|
|eval_f1_macro|0.711|0.901|0.868|0.909|
|eval_f1_micro|0.713|0.901|0.868|0.909|
|eval_accuracy_balanced|0.71|0.901|0.867|0.909|
|eval_accuracy|0.713|0.901|0.868|0.909|
|eval_precision_macro|0.711|0.901|0.868|0.909|
|eval_recall_macro|0.71|0.901|0.867|0.909|
|eval_precision_micro|0.713|0.901|0.868|0.909|
|eval_recall_micro|0.713|0.901|0.868|0.909|
|eval_runtime|568.387|4.571|0.829|3.382|
|eval_samples_per_second|14.955|206.945|227.909|223.805|
|eval_steps_per_second|0.118|1.75|2.412|1.774|
|epoch|2.99|2.99|2.99|2.99|
|Size of dataset|8500|946|189|757|
### Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3