Whisper_large_v3_turbo_v2

This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6363
  • Wer: 31.7384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8106 1.1834 500 1.0268 93.4686
0.5518 2.3669 1000 0.8523 56.8544
0.4203 3.5503 1500 0.7787 52.2696
0.2934 4.7337 2000 0.7357 48.8402
0.2243 5.9172 2500 0.7544 49.3678
0.1262 7.1006 3000 0.7770 49.9682
0.1038 8.2840 3500 0.7445 43.7824
0.0791 9.4675 4000 0.7615 44.6193
0.057 10.6509 4500 0.7432 41.0079
0.0441 11.8343 5000 0.7307 40.3166
0.0313 13.0178 5500 0.7222 38.7519
0.0147 14.2012 6000 0.7173 37.2965
0.0091 15.3846 6500 0.6866 34.8949
0.0022 16.5680 7000 0.6540 33.5031
0.0025 17.7515 7500 0.6488 32.5298
0.0004 18.9349 8000 0.6363 31.7384

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
1
Safetensors
Model size
809M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aslanovaf/Whisper_large_v3_turbo_v2

Finetuned
(160)
this model