metadata
library_name: transformers
language:
- sn
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- DigitalUmuganda/Afrivoice
metrics:
- wer
model-index:
- name: facebook/w2v-bert-2.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Afrivoice
type: DigitalUmuganda/Afrivoice
metrics:
- name: Wer
type: wer
value: 0.2852422372321298
facebook/w2v-bert-2.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Afrivoice dataset. It achieves the following results on the evaluation set:
- Loss: 0.3279
- Wer: 0.2852
- Cer: 0.0608
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.6237 | 1.0 | 3770 | 0.2098 | 0.2662 | 0.0444 |
0.198 | 2.0 | 7540 | 0.2007 | 0.2578 | 0.0431 |
0.1894 | 3.0 | 11310 | 0.1866 | 0.2487 | 0.0414 |
0.1734 | 4.0 | 15080 | 0.1879 | 0.2471 | 0.0430 |
0.1616 | 5.0 | 18850 | 0.1895 | 0.2596 | 0.0430 |
0.1535 | 6.0 | 22620 | 0.1861 | 0.2449 | 0.0419 |
0.1464 | 7.0 | 26390 | 0.1742 | 0.2410 | 0.0394 |
0.1404 | 8.0 | 30160 | 0.1716 | 0.2285 | 0.0377 |
0.1351 | 9.0 | 33930 | 0.1749 | 0.2323 | 0.0385 |
0.1284 | 10.0 | 37700 | 0.1792 | 0.2358 | 0.0391 |
0.1242 | 11.0 | 41470 | 0.1780 | 0.2355 | 0.0395 |
0.1169 | 12.0 | 45240 | 0.1938 | 0.2311 | 0.0389 |
0.1106 | 13.0 | 49010 | 0.1808 | 0.2289 | 0.0378 |
0.1041 | 14.0 | 52780 | 0.1838 | 0.2280 | 0.0381 |
0.0982 | 15.0 | 56550 | 0.1970 | 0.2274 | 0.0380 |
0.0916 | 16.0 | 60320 | 0.1861 | 0.2275 | 0.0376 |
0.0838 | 17.0 | 64090 | 0.1960 | 0.2306 | 0.0386 |
0.0781 | 18.0 | 67860 | 0.2029 | 0.2294 | 0.0380 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1