Visualize in Weights & Biases

wav2vec2-xls-r-ewe-50-hours

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8057
  • Wer: 0.3383
  • Cer: 0.0967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer Cer
11.6182 3.3670 500 2.5123 1.0 0.6328
1.3765 6.7340 1000 0.3954 0.3612 0.1030
0.8498 10.1010 1500 0.3698 0.3378 0.0963
0.7262 13.4680 2000 0.3916 0.3283 0.0956
0.6137 16.8350 2500 0.3981 0.3335 0.0971
0.52 20.2020 3000 0.4405 0.3467 0.0999
0.4375 23.5690 3500 0.4442 0.3506 0.1038
0.3707 26.9360 4000 0.5235 0.3471 0.0997
0.2992 30.3030 4500 0.5823 0.3550 0.1009
0.2632 33.6700 5000 0.6557 0.3449 0.0984
0.2181 37.0370 5500 0.6931 0.3412 0.0971
0.1888 40.4040 6000 0.7232 0.3420 0.0980
0.1653 43.7710 6500 0.7812 0.3394 0.0963
0.1463 47.1380 7000 0.8057 0.3383 0.0967

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for asr-africa/wav2vec2-xls-r-ewe-50-hours

Finetuned
(559)
this model